Update app.py
Browse files
app.py
CHANGED
|
@@ -1,84 +1,89 @@
|
|
| 1 |
#Importing all the necessary packages
|
| 2 |
-
import nltk
|
| 3 |
-
import librosa
|
| 4 |
-
import IPython.display
|
| 5 |
-
import torch
|
| 6 |
import gradio as gr
|
| 7 |
-
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
| 8 |
-
nltk.download("punkt")
|
| 9 |
#Loading the model and the tokenizer
|
| 10 |
-
model_name = "facebook/wav2vec2-base-960h"
|
| 11 |
-
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name
|
| 12 |
-
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 13 |
|
| 14 |
-
def load_data(input_file):
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def correct_casing(input_sentence):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
def asr_transcript(input_file):
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
return transcript[:3800]
|
| 76 |
gr.Interface(asr_transcript_long,
|
| 77 |
#inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"),
|
| 78 |
inputs = gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload your audio file here"),
|
| 79 |
outputs = gr.outputs.Textbox(type="str",label="Output Text"),
|
| 80 |
title="English Automated Speech Summarization",
|
| 81 |
description = "This tool transcribes your audio to the text",
|
| 82 |
-
|
| 83 |
-
theme="grass").launch()
|
| 84 |
-
|
|
|
|
| 1 |
#Importing all the necessary packages
|
| 2 |
+
# import nltk
|
| 3 |
+
# import librosa
|
| 4 |
+
# import IPython.display
|
| 5 |
+
# import torch
|
| 6 |
import gradio as gr
|
| 7 |
+
# from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
| 8 |
+
# nltk.download("punkt")
|
| 9 |
#Loading the model and the tokenizer
|
| 10 |
+
# model_name = "facebook/wav2vec2-base-960h"
|
| 11 |
+
# tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name
|
| 12 |
+
# model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 13 |
|
| 14 |
+
# def load_data(input_file):
|
| 15 |
+
# """ Function for resampling to ensure that the speech input is sampled at 16KHz.
|
| 16 |
+
# """
|
| 17 |
+
# #read the file
|
| 18 |
+
# speech, sample_rate = librosa.load(input_file)
|
| 19 |
+
# #make it 1-D
|
| 20 |
+
# if len(speech.shape) > 1:
|
| 21 |
+
# speech = speech[:,0] + speech[:,1]
|
| 22 |
+
# #Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
| 23 |
+
# if sample_rate !=16000:
|
| 24 |
+
# speech = librosa.resample(speech, sample_rate,16000)
|
| 25 |
+
# #speeches = librosa.effects.split(speech)
|
| 26 |
+
# return speech
|
| 27 |
+
# def correct_casing(input_sentence):
|
| 28 |
+
# """ This function is for correcting the casing of the generated transcribed text
|
| 29 |
+
# """
|
| 30 |
+
# sentences = nltk.sent_tokenize(input_sentence)
|
| 31 |
+
# return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
| 32 |
|
| 33 |
+
# def asr_transcript(input_file):
|
| 34 |
+
# """This function generates transcripts for the provided audio input
|
| 35 |
+
# """
|
| 36 |
+
# speech = load_data(input_file)
|
| 37 |
+
# #Tokenize
|
| 38 |
+
# input_values = tokenizer(speech, return_tensors="pt").input_values
|
| 39 |
+
# #Take logits
|
| 40 |
+
# logits = model(input_values).logits
|
| 41 |
+
# #Take argmax
|
| 42 |
+
# predicted_ids = torch.argmax(logits, dim=-1)
|
| 43 |
+
# #Get the words from predicted word ids
|
| 44 |
+
# transcription = tokenizer.decode(predicted_ids[0])
|
| 45 |
+
# #Output is all upper case
|
| 46 |
+
# transcription = correct_casing(transcription.lower())
|
| 47 |
+
# return transcription
|
| 48 |
+
# def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
|
| 49 |
+
# transcript = ""
|
| 50 |
+
# # Ensure that the sample rate is 16k
|
| 51 |
+
# sample_rate = librosa.get_samplerate(input_file)
|
| 52 |
|
| 53 |
+
# # Stream over 10 seconds chunks rather than load the full file
|
| 54 |
+
# stream = librosa.stream(
|
| 55 |
+
# input_file,
|
| 56 |
+
# block_length=20, #number of seconds to split the batch
|
| 57 |
+
# frame_length=sample_rate, #16000,
|
| 58 |
+
# hop_length=sample_rate, #16000
|
| 59 |
+
# )
|
| 60 |
|
| 61 |
+
# for speech in stream:
|
| 62 |
+
# if len(speech.shape) > 1:
|
| 63 |
+
# speech = speech[:, 0] + speech[:, 1]
|
| 64 |
+
# if sample_rate !=16000:
|
| 65 |
+
# speech = librosa.resample(speech, sample_rate,16000)
|
| 66 |
+
# input_values = tokenizer(speech, return_tensors="pt").input_values
|
| 67 |
+
# logits = model(input_values).logits
|
| 68 |
|
| 69 |
+
# predicted_ids = torch.argmax(logits, dim=-1)
|
| 70 |
+
# transcription = tokenizer.decode(predicted_ids[0])
|
| 71 |
+
# #transcript += transcription.lower()
|
| 72 |
+
# transcript += correct_casing(transcription.lower())
|
| 73 |
+
# #transcript += " "
|
| 74 |
+
|
| 75 |
+
# return transcript[:3800]
|
| 76 |
+
from transformers import pipeline
|
| 77 |
+
p=pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
| 78 |
+
|
| 79 |
+
def asr_transcript_long(input_file):
|
| 80 |
+
return p(input_file, chunk_length_s=10, stride_length_s=(2, 2))['text']
|
| 81 |
|
|
|
|
| 82 |
gr.Interface(asr_transcript_long,
|
| 83 |
#inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"),
|
| 84 |
inputs = gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload your audio file here"),
|
| 85 |
outputs = gr.outputs.Textbox(type="str",label="Output Text"),
|
| 86 |
title="English Automated Speech Summarization",
|
| 87 |
description = "This tool transcribes your audio to the text",
|
| 88 |
+
examples = [["sample 1.flac"], ["sample 2.flac"], ["sample 3.flac"],["TheDiverAnUncannyTale.mp3"]],
|
| 89 |
+
theme="grass").launch()
|
|
|