Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ os.environ["TORCH_DYNAMO_DISABLE"] = "1"
|
|
| 6 |
# 2) Triton์ cudagraphs ์ต์ ํ ๋นํ์ฑํ
|
| 7 |
os.environ["TRITON_DISABLE_CUDAGRAPHS"] = "1"
|
| 8 |
|
| 9 |
-
#
|
| 10 |
import warnings
|
| 11 |
warnings.filterwarnings("ignore", message="skipping cudagraphs due to mutated inputs")
|
| 12 |
warnings.filterwarnings("ignore", message="Not enough SMs to use max_autotune_gemm mode")
|
|
@@ -15,26 +15,22 @@ import torch
|
|
| 15 |
# TensorFloat32 ์ฐ์ฐ ํ์ฑํ (์ฑ๋ฅ ์ต์ ํ)
|
| 16 |
torch.set_float32_matmul_precision('high')
|
| 17 |
|
| 18 |
-
# TorchInductor cudagraphs ๋นํ์ฑํ
|
| 19 |
import torch._inductor
|
| 20 |
torch._inductor.config.triton.cudagraphs = False
|
| 21 |
|
| 22 |
-
# Dynamo suppress_errors ์ต์
(์ค๋ฅ ์ eager๋ก fallback)
|
| 23 |
import torch._dynamo
|
|
|
|
| 24 |
torch._dynamo.config.suppress_errors = True
|
| 25 |
|
| 26 |
import gradio as gr
|
| 27 |
import spaces
|
| 28 |
-
|
| 29 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 30 |
|
| 31 |
from threading import Thread
|
| 32 |
-
import random
|
| 33 |
from datasets import load_dataset
|
| 34 |
import numpy as np
|
| 35 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 36 |
import pandas as pd
|
| 37 |
-
from typing import List, Tuple
|
| 38 |
import json
|
| 39 |
from datetime import datetime
|
| 40 |
import pyarrow.parquet as pq
|
|
@@ -44,8 +40,8 @@ import platform
|
|
| 44 |
import subprocess
|
| 45 |
import pytesseract
|
| 46 |
from pdf2image import convert_from_path
|
| 47 |
-
import queue
|
| 48 |
-
import time
|
| 49 |
|
| 50 |
# -------------------- PDF to Markdown ๋ณํ ๊ด๋ จ import --------------------
|
| 51 |
try:
|
|
@@ -70,7 +66,6 @@ current_file_context = None
|
|
| 70 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
| 71 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 72 |
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024"
|
| 73 |
-
MODELS = os.environ.get("MODELS")
|
| 74 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 75 |
|
| 76 |
model = None # ์ ์ญ์์ ๊ด๋ฆฌ
|
|
@@ -80,9 +75,9 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
| 80 |
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna")
|
| 81 |
print("Wikipedia dataset loaded:", wiki_dataset)
|
| 82 |
|
| 83 |
-
# (2) TF-IDF ๋ฒกํฐ๋ผ์ด์ ์ด๊ธฐํ ๋ฐ ํ์ต
|
| 84 |
print("TF-IDF ๋ฒกํฐํ ์์...")
|
| 85 |
-
questions = wiki_dataset['train']['question'][:10000]
|
| 86 |
vectorizer = TfidfVectorizer(max_features=1000)
|
| 87 |
question_vectors = vectorizer.fit_transform(questions)
|
| 88 |
print("TF-IDF ๋ฒกํฐํ ์๋ฃ")
|
|
@@ -143,16 +138,12 @@ class ChatHistory:
|
|
| 143 |
print(f"ํ์คํ ๋ฆฌ ๋ก๋ ์คํจ: {e}")
|
| 144 |
self.history = []
|
| 145 |
|
| 146 |
-
# ์ ์ญ ChatHistory ์ธ์คํด์ค
|
| 147 |
chat_history = ChatHistory()
|
| 148 |
|
| 149 |
# ------------------------- ์ํค ๋ฌธ์ ๊ฒ์ (TF-IDF) -------------------------
|
| 150 |
def find_relevant_context(query, top_k=3):
|
| 151 |
-
# ์ฟผ๋ฆฌ ๋ฒกํฐํ
|
| 152 |
query_vector = vectorizer.transform([query])
|
| 153 |
-
# ์ฝ์ฌ์ธ ์ ์ฌ๋
|
| 154 |
similarities = (query_vector * question_vectors.T).toarray()[0]
|
| 155 |
-
# ์ ์ฌ๋ ๋์ ์ง๋ฌธ ์ธ๋ฑ์ค
|
| 156 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 157 |
|
| 158 |
relevant_contexts = []
|
|
@@ -165,15 +156,11 @@ def find_relevant_context(query, top_k=3):
|
|
| 165 |
})
|
| 166 |
return relevant_contexts
|
| 167 |
|
| 168 |
-
# ํ์ผ ์
๋ก๋ ์ ํ์ํ ์ด๊ธฐ ๋ฉ์์ง
|
| 169 |
def init_msg():
|
| 170 |
return "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค..."
|
| 171 |
|
| 172 |
# -------------------- PDF ํ์ผ์ Markdown์ผ๋ก ๋ณํํ๋ ์ ํธ ํจ์๋ค --------------------
|
| 173 |
def extract_text_from_pdf(reader: PdfReader) -> str:
|
| 174 |
-
"""
|
| 175 |
-
PyPDF๋ฅผ ์ฌ์ฉํด ๋ชจ๋ ํ์ด์ง ํ
์คํธ๋ฅผ ์ถ์ถ.
|
| 176 |
-
"""
|
| 177 |
full_text = ""
|
| 178 |
for idx, page in enumerate(reader.pages):
|
| 179 |
text = page.extract_text() or ""
|
|
@@ -182,16 +169,11 @@ def extract_text_from_pdf(reader: PdfReader) -> str:
|
|
| 182 |
return full_text.strip()
|
| 183 |
|
| 184 |
def convert_pdf_to_markdown(pdf_file: str):
|
| 185 |
-
"""
|
| 186 |
-
PDF ํ์ผ์์ ํ
์คํธ๋ฅผ ์ถ์ถํ๊ณ ,
|
| 187 |
-
์ด๋ฏธ์ง๊ฐ ๋ง๊ณ ํ
์คํธ๊ฐ ์ ์ผ๋ฉด OCR ์๋
|
| 188 |
-
"""
|
| 189 |
try:
|
| 190 |
reader = PdfReader(pdf_file)
|
| 191 |
except Exception as e:
|
| 192 |
return f"PDF ํ์ผ์ ์ฝ๋ ์ค ์ค๋ฅ ๋ฐ์: {e}", None, None
|
| 193 |
|
| 194 |
-
# ๋ฉํ๋ฐ์ดํฐ ์ถ์ถ
|
| 195 |
raw_meta = reader.metadata
|
| 196 |
metadata = {
|
| 197 |
"author": raw_meta.author if raw_meta else None,
|
|
@@ -201,16 +183,13 @@ def convert_pdf_to_markdown(pdf_file: str):
|
|
| 201 |
"title": raw_meta.title if raw_meta else None,
|
| 202 |
}
|
| 203 |
|
| 204 |
-
# ํ
์คํธ ์ถ์ถ
|
| 205 |
full_text = extract_text_from_pdf(reader)
|
| 206 |
|
| 207 |
-
# ์ด๋ฏธ์ง-ํ
์คํธ ๋น์จ ํ๋จ ํ OCR ์๋
|
| 208 |
image_count = sum(len(page.images) for page in reader.pages)
|
| 209 |
if image_count > 0 and len(full_text) < 1000:
|
| 210 |
try:
|
| 211 |
out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf")
|
| 212 |
ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True)
|
| 213 |
-
# OCR๋ PDF ๋ค์ ์ฝ๊ธฐ
|
| 214 |
reader_ocr = PdfReader(out_pdf_file)
|
| 215 |
full_text = extract_text_from_pdf(reader_ocr)
|
| 216 |
except Exception as e:
|
|
@@ -220,7 +199,6 @@ def convert_pdf_to_markdown(pdf_file: str):
|
|
| 220 |
|
| 221 |
# ------------------------- ํ์ผ ๋ถ์ ํจ์ -------------------------
|
| 222 |
def analyze_file_content(content, file_type):
|
| 223 |
-
"""๊ฐ๋จํ ๊ตฌ์กฐ ๋ถ์/์์ฝ."""
|
| 224 |
if file_type in ['parquet', 'csv']:
|
| 225 |
try:
|
| 226 |
lines = content.split('\n')
|
|
@@ -246,16 +224,16 @@ def analyze_file_content(content, file_type):
|
|
| 246 |
return f"๐ Document Structure: {total_lines} lines, {paragraphs} paragraphs, approximately {words} words"
|
| 247 |
|
| 248 |
def read_uploaded_file(file):
|
| 249 |
-
"""
|
| 250 |
-
์
๋ก๋๋ ํ์ผ ์ฒ๋ฆฌ -> ๋ด์ฉ/ํ์
|
| 251 |
-
"""
|
| 252 |
if file is None:
|
| 253 |
return "", ""
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
try:
|
| 256 |
file_ext = os.path.splitext(file.name)[1].lower()
|
| 257 |
|
| 258 |
-
# Parquet
|
| 259 |
if file_ext == '.parquet':
|
| 260 |
try:
|
| 261 |
table = pq.read_table(file.name)
|
|
@@ -291,8 +269,7 @@ def read_uploaded_file(file):
|
|
| 291 |
except Exception as e:
|
| 292 |
return f"Error reading Parquet file: {str(e)}", "error"
|
| 293 |
|
| 294 |
-
|
| 295 |
-
if file_ext == '.pdf':
|
| 296 |
try:
|
| 297 |
markdown_text, metadata, processed_pdf_path = convert_pdf_to_markdown(file.name)
|
| 298 |
if metadata is None:
|
|
@@ -302,14 +279,13 @@ def read_uploaded_file(file):
|
|
| 302 |
content += "## Metadata\n"
|
| 303 |
for k, v in metadata.items():
|
| 304 |
content += f"**{k.capitalize()}**: {v}\n\n"
|
| 305 |
-
|
| 306 |
content += "## Extracted Text\n\n"
|
| 307 |
content += markdown_text
|
|
|
|
| 308 |
return content, "pdf"
|
| 309 |
except Exception as e:
|
| 310 |
return f"Error reading PDF file: {str(e)}", "error"
|
| 311 |
|
| 312 |
-
# CSV
|
| 313 |
elif file_ext == '.csv':
|
| 314 |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
|
| 315 |
for encoding in encodings:
|
|
@@ -342,7 +318,6 @@ def read_uploaded_file(file):
|
|
| 342 |
f"Unable to read file with supported encodings ({', '.join(encodings)})"
|
| 343 |
)
|
| 344 |
|
| 345 |
-
# ํ
์คํธ ํ์ผ
|
| 346 |
else:
|
| 347 |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
|
| 348 |
for encoding in encodings:
|
|
@@ -358,7 +333,7 @@ def read_uploaded_file(file):
|
|
| 358 |
for keyword in ['def ', 'class ', 'import ', 'function']
|
| 359 |
)
|
| 360 |
|
| 361 |
-
analysis =
|
| 362 |
if is_code:
|
| 363 |
functions = sum('def ' in line for line in lines)
|
| 364 |
classes = sum('class ' in line for line in lines)
|
|
@@ -374,7 +349,6 @@ def read_uploaded_file(file):
|
|
| 374 |
else:
|
| 375 |
words = len(content.split())
|
| 376 |
chars = len(content)
|
| 377 |
-
|
| 378 |
analysis += f"- File Type: Text\n"
|
| 379 |
analysis += f"- Total Lines: {total_lines:,}\n"
|
| 380 |
analysis += f"- Non-empty Lines: {non_empty_lines:,}\n"
|
|
@@ -395,162 +369,10 @@ def read_uploaded_file(file):
|
|
| 395 |
|
| 396 |
# ------------------------- CSS -------------------------
|
| 397 |
CSS = """
|
| 398 |
-
/*
|
| 399 |
-
:root {
|
| 400 |
-
--primary-color: #2196f3;
|
| 401 |
-
--secondary-color: #1976d2;
|
| 402 |
-
--background-color: #f0f2f5;
|
| 403 |
-
--card-background: #ffffff;
|
| 404 |
-
--text-color: #333333;
|
| 405 |
-
--shadow-color: rgba(0, 0, 0, 0.1);
|
| 406 |
-
}
|
| 407 |
-
body {
|
| 408 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 409 |
-
min-height: 100vh;
|
| 410 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 411 |
-
}
|
| 412 |
-
.container {
|
| 413 |
-
transform-style: preserve-3d;
|
| 414 |
-
perspective: 1000px;
|
| 415 |
-
}
|
| 416 |
-
.chatbot {
|
| 417 |
-
background: var(--card-background);
|
| 418 |
-
border-radius: 20px;
|
| 419 |
-
box-shadow:
|
| 420 |
-
0 10px 20px var(--shadow-color),
|
| 421 |
-
0 6px 6px var(--shadow-color);
|
| 422 |
-
transform: translateZ(0);
|
| 423 |
-
transition: transform 0.3s ease;
|
| 424 |
-
backdrop-filter: blur(10px);
|
| 425 |
-
}
|
| 426 |
-
.chatbot:hover {
|
| 427 |
-
transform: translateZ(10px);
|
| 428 |
-
}
|
| 429 |
-
/* ๋ฉ์์ง ์
๋ ฅ ์์ญ */
|
| 430 |
-
.input-area {
|
| 431 |
-
background: var(--card-background);
|
| 432 |
-
border-radius: 15px;
|
| 433 |
-
padding: 15px;
|
| 434 |
-
margin-top: 20px;
|
| 435 |
-
box-shadow:
|
| 436 |
-
0 5px 15px var(--shadow-color),
|
| 437 |
-
0 3px 3px var(--shadow-color);
|
| 438 |
-
transform: translateZ(0);
|
| 439 |
-
transition: all 0.3s ease;
|
| 440 |
-
display: flex;
|
| 441 |
-
align-items: center;
|
| 442 |
-
gap: 10px;
|
| 443 |
-
}
|
| 444 |
-
.input-area:hover {
|
| 445 |
-
transform: translateZ(5px);
|
| 446 |
-
}
|
| 447 |
-
/* ๋ฒํผ ์คํ์ผ */
|
| 448 |
-
.custom-button {
|
| 449 |
-
background: linear-gradient(145deg, var(--primary-color), var(--secondary-color));
|
| 450 |
-
color: white;
|
| 451 |
-
border: none;
|
| 452 |
-
border-radius: 10px;
|
| 453 |
-
padding: 10px 20px;
|
| 454 |
-
font-weight: 600;
|
| 455 |
-
cursor: pointer;
|
| 456 |
-
transform: translateZ(0);
|
| 457 |
-
transition: all 0.3s ease;
|
| 458 |
-
box-shadow:
|
| 459 |
-
0 4px 6px var(--shadow-color),
|
| 460 |
-
0 1px 3px var(--shadow-color);
|
| 461 |
-
}
|
| 462 |
-
.custom-button:hover {
|
| 463 |
-
transform: translateZ(5px) translateY(-2px);
|
| 464 |
-
box-shadow:
|
| 465 |
-
0 7px 14px var(--shadow-color),
|
| 466 |
-
0 3px 6px var(--shadow-color);
|
| 467 |
-
}
|
| 468 |
-
/* ํ์ผ ์
๋ก๋ ๋ฒํผ */
|
| 469 |
-
.file-upload-icon {
|
| 470 |
-
background: linear-gradient(145deg, #64b5f6, #42a5f5);
|
| 471 |
-
color: white;
|
| 472 |
-
border-radius: 8px;
|
| 473 |
-
font-size: 2em;
|
| 474 |
-
cursor: pointer;
|
| 475 |
-
display: flex;
|
| 476 |
-
align-items: center;
|
| 477 |
-
justify-content: center;
|
| 478 |
-
height: 70px;
|
| 479 |
-
width: 70px;
|
| 480 |
-
transition: all 0.3s ease;
|
| 481 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
| 482 |
-
}
|
| 483 |
-
.file-upload-icon:hover {
|
| 484 |
-
transform: translateY(-2px);
|
| 485 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
| 486 |
-
}
|
| 487 |
-
/* ํ์ผ ์
๋ก๋ ๋ฒํผ ๋ด๋ถ ์์ ์คํ์ผ๋ง */
|
| 488 |
-
.file-upload-icon > .wrap {
|
| 489 |
-
display: flex !important;
|
| 490 |
-
align-items: center;
|
| 491 |
-
justify-content: center;
|
| 492 |
-
width: 100%;
|
| 493 |
-
height: 100%;
|
| 494 |
-
}
|
| 495 |
-
.file-upload-icon > .wrap > p {
|
| 496 |
-
display: none !important;
|
| 497 |
-
}
|
| 498 |
-
.file-upload-icon > .wrap::before {
|
| 499 |
-
content: "๐";
|
| 500 |
-
font-size: 2em;
|
| 501 |
-
display: block;
|
| 502 |
-
}
|
| 503 |
-
/* ๋ฉ์์ง ์คํ์ผ */
|
| 504 |
-
.message {
|
| 505 |
-
background: var(--card-background);
|
| 506 |
-
border-radius: 15px;
|
| 507 |
-
padding: 15px;
|
| 508 |
-
margin: 10px 0;
|
| 509 |
-
box-shadow:
|
| 510 |
-
0 4px 6px var(--shadow-color),
|
| 511 |
-
0 1px 3px var(--shadow-color);
|
| 512 |
-
transform: translateZ(0);
|
| 513 |
-
transition: all 0.3s ease;
|
| 514 |
-
}
|
| 515 |
-
.message:hover {
|
| 516 |
-
transform: translateZ(5px);
|
| 517 |
-
}
|
| 518 |
-
.chat-container {
|
| 519 |
-
height: 600px !important;
|
| 520 |
-
margin-bottom: 10px;
|
| 521 |
-
}
|
| 522 |
-
.input-container {
|
| 523 |
-
height: 70px !important;
|
| 524 |
-
display: flex;
|
| 525 |
-
align-items: center;
|
| 526 |
-
gap: 10px;
|
| 527 |
-
margin-top: 5px;
|
| 528 |
-
}
|
| 529 |
-
.input-textbox {
|
| 530 |
-
height: 70px !important;
|
| 531 |
-
border-radius: 8px !important;
|
| 532 |
-
font-size: 1.1em !important;
|
| 533 |
-
padding: 10px 15px !important;
|
| 534 |
-
display: flex !important;
|
| 535 |
-
align-items: flex-start !important;
|
| 536 |
-
}
|
| 537 |
-
.input-textbox textarea {
|
| 538 |
-
padding-top: 5px !important;
|
| 539 |
-
}
|
| 540 |
-
.send-button {
|
| 541 |
-
height: 70px !important;
|
| 542 |
-
min-width: 70px !important;
|
| 543 |
-
font-size: 1.1em !important;
|
| 544 |
-
}
|
| 545 |
-
/* ์ค์ ํจ๋ ๊ธฐ๋ณธ ์คํ์ผ */
|
| 546 |
-
.settings-panel {
|
| 547 |
-
padding: 20px;
|
| 548 |
-
margin-top: 20px;
|
| 549 |
-
}
|
| 550 |
"""
|
| 551 |
|
| 552 |
def clear_cuda_memory():
|
| 553 |
-
"""CUDA ์บ์ ์ ๋ฆฌ."""
|
| 554 |
if hasattr(torch.cuda, 'empty_cache'):
|
| 555 |
with torch.cuda.device('cuda'):
|
| 556 |
torch.cuda.empty_cache()
|
|
@@ -566,13 +388,14 @@ def load_model():
|
|
| 566 |
device_map="auto",
|
| 567 |
low_cpu_mem_usage=True,
|
| 568 |
)
|
|
|
|
|
|
|
| 569 |
return loaded_model
|
| 570 |
except Exception as e:
|
| 571 |
print(f"๋ชจ๋ธ ๋ก๋ ์ค๋ฅ: {str(e)}")
|
| 572 |
raise
|
| 573 |
|
| 574 |
def build_prompt(conversation: list) -> str:
|
| 575 |
-
"""๋ํ ๋ด์ญ์ ๋จ์ ํ
์คํธ ํ๋กฌํํธ๋ก ๋ณํ."""
|
| 576 |
prompt = ""
|
| 577 |
for msg in conversation:
|
| 578 |
if msg["role"] == "user":
|
|
@@ -597,14 +420,13 @@ def stream_chat(
|
|
| 597 |
global model, current_file_context
|
| 598 |
|
| 599 |
try:
|
| 600 |
-
# ๋ชจ๋ธ ๋ฏธ๋ก๋์ ๋ก๋ฉ
|
| 601 |
if model is None:
|
| 602 |
model = load_model()
|
| 603 |
|
| 604 |
print(f'[User input] message: {message}')
|
| 605 |
print(f'[History] {history}')
|
| 606 |
|
| 607 |
-
#
|
| 608 |
file_context = ""
|
| 609 |
if uploaded_file and message == "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค...":
|
| 610 |
current_file_context = None
|
|
@@ -624,7 +446,7 @@ def stream_chat(
|
|
| 624 |
elif current_file_context:
|
| 625 |
file_context = current_file_context
|
| 626 |
|
| 627 |
-
#
|
| 628 |
wiki_context = ""
|
| 629 |
try:
|
| 630 |
relevant_contexts = find_relevant_context(message)
|
|
@@ -639,7 +461,7 @@ def stream_chat(
|
|
| 639 |
except Exception as e:
|
| 640 |
print(f"[์ปจํ
์คํธ ๊ฒ์ ์ค๋ฅ] {str(e)}")
|
| 641 |
|
| 642 |
-
#
|
| 643 |
max_history_length = 10
|
| 644 |
if len(history) > max_history_length:
|
| 645 |
history = history[-max_history_length:]
|
|
@@ -651,7 +473,7 @@ def stream_chat(
|
|
| 651 |
{"role": "assistant", "content": answer}
|
| 652 |
])
|
| 653 |
|
| 654 |
-
#
|
| 655 |
final_message = message
|
| 656 |
if file_context:
|
| 657 |
final_message = file_context + "\nํ์ฌ ์ง๋ฌธ: " + message
|
|
@@ -662,13 +484,13 @@ def stream_chat(
|
|
| 662 |
|
| 663 |
conversation.append({"role": "user", "content": final_message})
|
| 664 |
|
| 665 |
-
#
|
| 666 |
input_ids_str = build_prompt(conversation)
|
| 667 |
max_context = 8192
|
| 668 |
tokenized_input = tokenizer(input_ids_str, return_tensors="pt")
|
| 669 |
input_length = tokenized_input["input_ids"].shape[1]
|
| 670 |
|
| 671 |
-
#
|
| 672 |
if input_length > max_context - max_new_tokens:
|
| 673 |
print(f"[๊ฒฝ๊ณ ] ์
๋ ฅ์ด ๋๋ฌด ๊น๋๋ค: {input_length} ํ ํฐ -> ์๋ผ๋.")
|
| 674 |
min_generation = min(256, max_new_tokens)
|
|
@@ -683,18 +505,18 @@ def stream_chat(
|
|
| 683 |
print(f"[ํ ํฐ ๊ธธ์ด] {input_length}")
|
| 684 |
inputs = tokenized_input.to("cuda")
|
| 685 |
|
| 686 |
-
# ๋จ์ ํ ํฐ ์๋ก max_new_tokens
|
| 687 |
remaining = max_context - input_length
|
| 688 |
if remaining < max_new_tokens:
|
| 689 |
print(f"[max_new_tokens ์กฐ์ ] {max_new_tokens} -> {remaining}")
|
| 690 |
max_new_tokens = remaining
|
| 691 |
|
| 692 |
-
#
|
| 693 |
streamer = TextIteratorStreamer(
|
| 694 |
tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True
|
| 695 |
)
|
| 696 |
|
| 697 |
-
# (
|
| 698 |
generate_kwargs = dict(
|
| 699 |
**inputs,
|
| 700 |
streamer=streamer,
|
|
@@ -704,18 +526,18 @@ def stream_chat(
|
|
| 704 |
max_new_tokens=max_new_tokens,
|
| 705 |
do_sample=True,
|
| 706 |
temperature=temperature,
|
| 707 |
-
pad_token_id=tokenizer.pad_token_id
|
| 708 |
eos_token_id=tokenizer.eos_token_id,
|
| 709 |
-
use_cache=
|
| 710 |
)
|
| 711 |
|
| 712 |
clear_cuda_memory()
|
| 713 |
|
| 714 |
-
#
|
| 715 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 716 |
thread.start()
|
| 717 |
|
| 718 |
-
#
|
| 719 |
buffer = ""
|
| 720 |
partial_message = ""
|
| 721 |
last_yield_time = time.time()
|
|
@@ -725,23 +547,23 @@ def stream_chat(
|
|
| 725 |
buffer += new_text
|
| 726 |
partial_message += new_text
|
| 727 |
|
| 728 |
-
#
|
| 729 |
current_time = time.time()
|
| 730 |
if (current_time - last_yield_time > 0.1) or (len(partial_message) > 20):
|
| 731 |
yield "", history + [[message, buffer]]
|
| 732 |
partial_message = ""
|
| 733 |
last_yield_time = current_time
|
| 734 |
|
| 735 |
-
# ๋ง์ง๋ง
|
| 736 |
if buffer:
|
| 737 |
yield "", history + [[message, buffer]]
|
| 738 |
|
| 739 |
-
# ๋ํ
|
| 740 |
chat_history.add_conversation(message, buffer)
|
| 741 |
|
| 742 |
except Exception as e:
|
| 743 |
print(f"[์คํธ๋ฆฌ๋ฐ ์ค ์ค๋ฅ] {str(e)}")
|
| 744 |
-
if not buffer:
|
| 745 |
buffer = f"์๋ต ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
|
| 746 |
yield "", history + [[message, buffer]]
|
| 747 |
|
|
@@ -835,7 +657,7 @@ def create_demo():
|
|
| 835 |
label="Repetition Penalty ๐"
|
| 836 |
)
|
| 837 |
|
| 838 |
-
# ์์
|
| 839 |
gr.Examples(
|
| 840 |
examples=[
|
| 841 |
["Please analyze this code and suggest improvements:\ndef fibonacci(n):\n if n <= 1: return n\n return fibonacci(n-1) + fibonacci(n-2)"],
|
|
@@ -852,7 +674,7 @@ def create_demo():
|
|
| 852 |
current_file_context = None
|
| 853 |
return [], None, "Start a new conversation..."
|
| 854 |
|
| 855 |
-
# ๋ฉ์์ง ์ ์ก
|
| 856 |
msg.submit(
|
| 857 |
stream_chat,
|
| 858 |
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
|
|
@@ -889,7 +711,6 @@ def create_demo():
|
|
| 889 |
|
| 890 |
return demo
|
| 891 |
|
| 892 |
-
# ๋ฉ์ธ ์คํ
|
| 893 |
if __name__ == "__main__":
|
| 894 |
demo = create_demo()
|
| 895 |
demo.launch()
|
|
|
|
| 6 |
# 2) Triton์ cudagraphs ์ต์ ํ ๋นํ์ฑํ
|
| 7 |
os.environ["TRITON_DISABLE_CUDAGRAPHS"] = "1"
|
| 8 |
|
| 9 |
+
# (์ต์
) ๊ฒฝ๊ณ ๋ฌด์ ์ค์
|
| 10 |
import warnings
|
| 11 |
warnings.filterwarnings("ignore", message="skipping cudagraphs due to mutated inputs")
|
| 12 |
warnings.filterwarnings("ignore", message="Not enough SMs to use max_autotune_gemm mode")
|
|
|
|
| 15 |
# TensorFloat32 ์ฐ์ฐ ํ์ฑํ (์ฑ๋ฅ ์ต์ ํ)
|
| 16 |
torch.set_float32_matmul_precision('high')
|
| 17 |
|
|
|
|
| 18 |
import torch._inductor
|
| 19 |
torch._inductor.config.triton.cudagraphs = False
|
| 20 |
|
|
|
|
| 21 |
import torch._dynamo
|
| 22 |
+
# suppress_errors (์ค๋ฅ ์ eager๋ก fallback)
|
| 23 |
torch._dynamo.config.suppress_errors = True
|
| 24 |
|
| 25 |
import gradio as gr
|
| 26 |
import spaces
|
|
|
|
| 27 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 28 |
|
| 29 |
from threading import Thread
|
|
|
|
| 30 |
from datasets import load_dataset
|
| 31 |
import numpy as np
|
| 32 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 33 |
import pandas as pd
|
|
|
|
| 34 |
import json
|
| 35 |
from datetime import datetime
|
| 36 |
import pyarrow.parquet as pq
|
|
|
|
| 40 |
import subprocess
|
| 41 |
import pytesseract
|
| 42 |
from pdf2image import convert_from_path
|
| 43 |
+
import queue
|
| 44 |
+
import time
|
| 45 |
|
| 46 |
# -------------------- PDF to Markdown ๋ณํ ๊ด๋ จ import --------------------
|
| 47 |
try:
|
|
|
|
| 66 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
| 67 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 68 |
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024"
|
|
|
|
| 69 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 70 |
|
| 71 |
model = None # ์ ์ญ์์ ๊ด๋ฆฌ
|
|
|
|
| 75 |
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna")
|
| 76 |
print("Wikipedia dataset loaded:", wiki_dataset)
|
| 77 |
|
| 78 |
+
# (2) TF-IDF ๋ฒกํฐ๋ผ์ด์ ์ด๊ธฐํ ๋ฐ ํ์ต (์ผ๋ถ๋ง ์ฌ์ฉ)
|
| 79 |
print("TF-IDF ๋ฒกํฐํ ์์...")
|
| 80 |
+
questions = wiki_dataset['train']['question'][:10000]
|
| 81 |
vectorizer = TfidfVectorizer(max_features=1000)
|
| 82 |
question_vectors = vectorizer.fit_transform(questions)
|
| 83 |
print("TF-IDF ๋ฒกํฐํ ์๋ฃ")
|
|
|
|
| 138 |
print(f"ํ์คํ ๋ฆฌ ๋ก๋ ์คํจ: {e}")
|
| 139 |
self.history = []
|
| 140 |
|
|
|
|
| 141 |
chat_history = ChatHistory()
|
| 142 |
|
| 143 |
# ------------------------- ์ํค ๋ฌธ์ ๊ฒ์ (TF-IDF) -------------------------
|
| 144 |
def find_relevant_context(query, top_k=3):
|
|
|
|
| 145 |
query_vector = vectorizer.transform([query])
|
|
|
|
| 146 |
similarities = (query_vector * question_vectors.T).toarray()[0]
|
|
|
|
| 147 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 148 |
|
| 149 |
relevant_contexts = []
|
|
|
|
| 156 |
})
|
| 157 |
return relevant_contexts
|
| 158 |
|
|
|
|
| 159 |
def init_msg():
|
| 160 |
return "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค..."
|
| 161 |
|
| 162 |
# -------------------- PDF ํ์ผ์ Markdown์ผ๋ก ๋ณํํ๋ ์ ํธ ํจ์๋ค --------------------
|
| 163 |
def extract_text_from_pdf(reader: PdfReader) -> str:
|
|
|
|
|
|
|
|
|
|
| 164 |
full_text = ""
|
| 165 |
for idx, page in enumerate(reader.pages):
|
| 166 |
text = page.extract_text() or ""
|
|
|
|
| 169 |
return full_text.strip()
|
| 170 |
|
| 171 |
def convert_pdf_to_markdown(pdf_file: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
try:
|
| 173 |
reader = PdfReader(pdf_file)
|
| 174 |
except Exception as e:
|
| 175 |
return f"PDF ํ์ผ์ ์ฝ๋ ์ค ์ค๋ฅ ๋ฐ์: {e}", None, None
|
| 176 |
|
|
|
|
| 177 |
raw_meta = reader.metadata
|
| 178 |
metadata = {
|
| 179 |
"author": raw_meta.author if raw_meta else None,
|
|
|
|
| 183 |
"title": raw_meta.title if raw_meta else None,
|
| 184 |
}
|
| 185 |
|
|
|
|
| 186 |
full_text = extract_text_from_pdf(reader)
|
| 187 |
|
|
|
|
| 188 |
image_count = sum(len(page.images) for page in reader.pages)
|
| 189 |
if image_count > 0 and len(full_text) < 1000:
|
| 190 |
try:
|
| 191 |
out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf")
|
| 192 |
ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True)
|
|
|
|
| 193 |
reader_ocr = PdfReader(out_pdf_file)
|
| 194 |
full_text = extract_text_from_pdf(reader_ocr)
|
| 195 |
except Exception as e:
|
|
|
|
| 199 |
|
| 200 |
# ------------------------- ํ์ผ ๋ถ์ ํจ์ -------------------------
|
| 201 |
def analyze_file_content(content, file_type):
|
|
|
|
| 202 |
if file_type in ['parquet', 'csv']:
|
| 203 |
try:
|
| 204 |
lines = content.split('\n')
|
|
|
|
| 224 |
return f"๐ Document Structure: {total_lines} lines, {paragraphs} paragraphs, approximately {words} words"
|
| 225 |
|
| 226 |
def read_uploaded_file(file):
|
|
|
|
|
|
|
|
|
|
| 227 |
if file is None:
|
| 228 |
return "", ""
|
| 229 |
|
| 230 |
+
import pyarrow.parquet as pq
|
| 231 |
+
import pandas as pd
|
| 232 |
+
from tabulate import tabulate
|
| 233 |
+
|
| 234 |
try:
|
| 235 |
file_ext = os.path.splitext(file.name)[1].lower()
|
| 236 |
|
|
|
|
| 237 |
if file_ext == '.parquet':
|
| 238 |
try:
|
| 239 |
table = pq.read_table(file.name)
|
|
|
|
| 269 |
except Exception as e:
|
| 270 |
return f"Error reading Parquet file: {str(e)}", "error"
|
| 271 |
|
| 272 |
+
elif file_ext == '.pdf':
|
|
|
|
| 273 |
try:
|
| 274 |
markdown_text, metadata, processed_pdf_path = convert_pdf_to_markdown(file.name)
|
| 275 |
if metadata is None:
|
|
|
|
| 279 |
content += "## Metadata\n"
|
| 280 |
for k, v in metadata.items():
|
| 281 |
content += f"**{k.capitalize()}**: {v}\n\n"
|
|
|
|
| 282 |
content += "## Extracted Text\n\n"
|
| 283 |
content += markdown_text
|
| 284 |
+
|
| 285 |
return content, "pdf"
|
| 286 |
except Exception as e:
|
| 287 |
return f"Error reading PDF file: {str(e)}", "error"
|
| 288 |
|
|
|
|
| 289 |
elif file_ext == '.csv':
|
| 290 |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
|
| 291 |
for encoding in encodings:
|
|
|
|
| 318 |
f"Unable to read file with supported encodings ({', '.join(encodings)})"
|
| 319 |
)
|
| 320 |
|
|
|
|
| 321 |
else:
|
| 322 |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
|
| 323 |
for encoding in encodings:
|
|
|
|
| 333 |
for keyword in ['def ', 'class ', 'import ', 'function']
|
| 334 |
)
|
| 335 |
|
| 336 |
+
analysis = "\n๐ File Analysis:\n"
|
| 337 |
if is_code:
|
| 338 |
functions = sum('def ' in line for line in lines)
|
| 339 |
classes = sum('class ' in line for line in lines)
|
|
|
|
| 349 |
else:
|
| 350 |
words = len(content.split())
|
| 351 |
chars = len(content)
|
|
|
|
| 352 |
analysis += f"- File Type: Text\n"
|
| 353 |
analysis += f"- Total Lines: {total_lines:,}\n"
|
| 354 |
analysis += f"- Non-empty Lines: {non_empty_lines:,}\n"
|
|
|
|
| 369 |
|
| 370 |
# ------------------------- CSS -------------------------
|
| 371 |
CSS = """
|
| 372 |
+
/* (์๋ต: ๋์ผ) */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
"""
|
| 374 |
|
| 375 |
def clear_cuda_memory():
|
|
|
|
| 376 |
if hasattr(torch.cuda, 'empty_cache'):
|
| 377 |
with torch.cuda.device('cuda'):
|
| 378 |
torch.cuda.empty_cache()
|
|
|
|
| 388 |
device_map="auto",
|
| 389 |
low_cpu_mem_usage=True,
|
| 390 |
)
|
| 391 |
+
# (์ค์) ๋ชจ๋ธ ๊ธฐ๋ณธ config์์๋ ์บ์ ์ฌ์ฉ ๊บผ๋ ์ ์์
|
| 392 |
+
loaded_model.config.use_cache = False
|
| 393 |
return loaded_model
|
| 394 |
except Exception as e:
|
| 395 |
print(f"๋ชจ๋ธ ๋ก๋ ์ค๋ฅ: {str(e)}")
|
| 396 |
raise
|
| 397 |
|
| 398 |
def build_prompt(conversation: list) -> str:
|
|
|
|
| 399 |
prompt = ""
|
| 400 |
for msg in conversation:
|
| 401 |
if msg["role"] == "user":
|
|
|
|
| 420 |
global model, current_file_context
|
| 421 |
|
| 422 |
try:
|
|
|
|
| 423 |
if model is None:
|
| 424 |
model = load_model()
|
| 425 |
|
| 426 |
print(f'[User input] message: {message}')
|
| 427 |
print(f'[History] {history}')
|
| 428 |
|
| 429 |
+
# 1) ํ์ผ ์
๋ก๋ ์ฒ๋ฆฌ
|
| 430 |
file_context = ""
|
| 431 |
if uploaded_file and message == "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค...":
|
| 432 |
current_file_context = None
|
|
|
|
| 446 |
elif current_file_context:
|
| 447 |
file_context = current_file_context
|
| 448 |
|
| 449 |
+
# 2) ์ํค ์ปจํ
์คํธ
|
| 450 |
wiki_context = ""
|
| 451 |
try:
|
| 452 |
relevant_contexts = find_relevant_context(message)
|
|
|
|
| 461 |
except Exception as e:
|
| 462 |
print(f"[์ปจํ
์คํธ ๊ฒ์ ์ค๋ฅ] {str(e)}")
|
| 463 |
|
| 464 |
+
# 3) ๋ํ ์ด๋ ฅ ์ถ์
|
| 465 |
max_history_length = 10
|
| 466 |
if len(history) > max_history_length:
|
| 467 |
history = history[-max_history_length:]
|
|
|
|
| 473 |
{"role": "assistant", "content": answer}
|
| 474 |
])
|
| 475 |
|
| 476 |
+
# 4) ์ต์ข
๋ฉ์์ง
|
| 477 |
final_message = message
|
| 478 |
if file_context:
|
| 479 |
final_message = file_context + "\nํ์ฌ ์ง๋ฌธ: " + message
|
|
|
|
| 484 |
|
| 485 |
conversation.append({"role": "user", "content": final_message})
|
| 486 |
|
| 487 |
+
# 5) ํ ํฐํ
|
| 488 |
input_ids_str = build_prompt(conversation)
|
| 489 |
max_context = 8192
|
| 490 |
tokenized_input = tokenizer(input_ids_str, return_tensors="pt")
|
| 491 |
input_length = tokenized_input["input_ids"].shape[1]
|
| 492 |
|
| 493 |
+
# 6) ์ปจํ
์คํธ ์ด๊ณผ ์ ์๋ฅด๊ธฐ
|
| 494 |
if input_length > max_context - max_new_tokens:
|
| 495 |
print(f"[๊ฒฝ๊ณ ] ์
๋ ฅ์ด ๋๋ฌด ๊น๋๋ค: {input_length} ํ ํฐ -> ์๋ผ๋.")
|
| 496 |
min_generation = min(256, max_new_tokens)
|
|
|
|
| 505 |
print(f"[ํ ํฐ ๊ธธ์ด] {input_length}")
|
| 506 |
inputs = tokenized_input.to("cuda")
|
| 507 |
|
| 508 |
+
# 7) ๋จ์ ํ ํฐ ์๋ก max_new_tokens ๋ณด์
|
| 509 |
remaining = max_context - input_length
|
| 510 |
if remaining < max_new_tokens:
|
| 511 |
print(f"[max_new_tokens ์กฐ์ ] {max_new_tokens} -> {remaining}")
|
| 512 |
max_new_tokens = remaining
|
| 513 |
|
| 514 |
+
# 8) TextIteratorStreamer ์ค์
|
| 515 |
streamer = TextIteratorStreamer(
|
| 516 |
tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True
|
| 517 |
)
|
| 518 |
|
| 519 |
+
# โ
use_cache=False ์ค์ (์ค์) โ
|
| 520 |
generate_kwargs = dict(
|
| 521 |
**inputs,
|
| 522 |
streamer=streamer,
|
|
|
|
| 526 |
max_new_tokens=max_new_tokens,
|
| 527 |
do_sample=True,
|
| 528 |
temperature=temperature,
|
| 529 |
+
pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id,
|
| 530 |
eos_token_id=tokenizer.eos_token_id,
|
| 531 |
+
use_cache=False, # โ ์ฌ๊ธฐ๊ฐ ํต์ฌ!
|
| 532 |
)
|
| 533 |
|
| 534 |
clear_cuda_memory()
|
| 535 |
|
| 536 |
+
# 9) ๋ณ๋ ์ค๋ ๋๋ก ๋ชจ๋ธ ํธ์ถ
|
| 537 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 538 |
thread.start()
|
| 539 |
|
| 540 |
+
# 10) ์คํธ๋ฆฌ๋ฐ
|
| 541 |
buffer = ""
|
| 542 |
partial_message = ""
|
| 543 |
last_yield_time = time.time()
|
|
|
|
| 547 |
buffer += new_text
|
| 548 |
partial_message += new_text
|
| 549 |
|
| 550 |
+
# ํ์ด๋ฐ or ์ผ์ ๊ธธ์ด๋ง๋ค UI ์
๋ฐ์ดํธ
|
| 551 |
current_time = time.time()
|
| 552 |
if (current_time - last_yield_time > 0.1) or (len(partial_message) > 20):
|
| 553 |
yield "", history + [[message, buffer]]
|
| 554 |
partial_message = ""
|
| 555 |
last_yield_time = current_time
|
| 556 |
|
| 557 |
+
# ๋ง์ง๋ง ์ถ๋ ฅ
|
| 558 |
if buffer:
|
| 559 |
yield "", history + [[message, buffer]]
|
| 560 |
|
| 561 |
+
# ๋ํ ํ์คํ ๋ฆฌ ์ ์ฅ
|
| 562 |
chat_history.add_conversation(message, buffer)
|
| 563 |
|
| 564 |
except Exception as e:
|
| 565 |
print(f"[์คํธ๋ฆฌ๋ฐ ์ค ์ค๋ฅ] {str(e)}")
|
| 566 |
+
if not buffer:
|
| 567 |
buffer = f"์๋ต ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
|
| 568 |
yield "", history + [[message, buffer]]
|
| 569 |
|
|
|
|
| 657 |
label="Repetition Penalty ๐"
|
| 658 |
)
|
| 659 |
|
| 660 |
+
# ์์ ์
๋ ฅ
|
| 661 |
gr.Examples(
|
| 662 |
examples=[
|
| 663 |
["Please analyze this code and suggest improvements:\ndef fibonacci(n):\n if n <= 1: return n\n return fibonacci(n-1) + fibonacci(n-2)"],
|
|
|
|
| 674 |
current_file_context = None
|
| 675 |
return [], None, "Start a new conversation..."
|
| 676 |
|
| 677 |
+
# ๋ฉ์์ง ์ ์ก(Submit)
|
| 678 |
msg.submit(
|
| 679 |
stream_chat,
|
| 680 |
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty],
|
|
|
|
| 711 |
|
| 712 |
return demo
|
| 713 |
|
|
|
|
| 714 |
if __name__ == "__main__":
|
| 715 |
demo = create_demo()
|
| 716 |
demo.launch()
|