Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Inc. team. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| """ | |
| Image/Text processor class for SigLIP. | |
| """ | |
| from typing import List, Optional, Union | |
| from transformers.feature_extraction_utils import BatchFeature | |
| from transformers.image_utils import ImageInput | |
| from transformers.processing_utils import ProcessorMixin | |
| from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
| from transformers.utils import TensorType | |
| class SiglipProcessor(ProcessorMixin): | |
| r""" | |
| Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor. | |
| [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the | |
| [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information. | |
| Args: | |
| image_processor ([`SiglipImageProcessor`]): | |
| The image processor is a required input. | |
| tokenizer ([`SiglipTokenizer`]): | |
| The tokenizer is a required input. | |
| """ | |
| attributes = ["image_processor", "tokenizer"] | |
| image_processor_class = "SiglipImageProcessor" | |
| tokenizer_class = "SiglipTokenizer" | |
| def __init__(self, image_processor, tokenizer): | |
| super().__init__(image_processor, tokenizer) | |
| def __call__( | |
| self, | |
| text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
| images: ImageInput = None, | |
| padding: Union[bool, str, PaddingStrategy] = False, | |
| truncation: Union[bool, str, TruncationStrategy] = None, | |
| max_length: int = None, | |
| return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
| ) -> BatchFeature: | |
| """ | |
| Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
| and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode | |
| the text. To prepare the image(s), this method forwards the `images` argument to | |
| SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
| of the above two methods for more information. | |
| Args: | |
| text (`str`, `List[str]`, `List[List[str]]`): | |
| The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
| (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
| `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
| images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
| The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
| tensor. Both channels-first and channels-last formats are supported. | |
| padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
| index) among: | |
| - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
| acceptable input length for the model if that argument is not provided. | |
| - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
| lengths). | |
| max_length (`int`, *optional*): | |
| Maximum length of the returned list and optionally padding length (see above). | |
| truncation (`bool`, *optional*): | |
| Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
| return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
| If set, will return tensors of a particular framework. Acceptable values are: | |
| - `'tf'`: Return TensorFlow `tf.constant` objects. | |
| - `'pt'`: Return PyTorch `torch.Tensor` objects. | |
| - `'np'`: Return NumPy `np.ndarray` objects. | |
| - `'jax'`: Return JAX `jnp.ndarray` objects. | |
| Returns: | |
| [`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
| - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
| - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
| `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
| `None`). | |
| - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
| """ | |
| if text is None and images is None: | |
| raise ValueError("You have to specify either text or images. Both cannot be none.") | |
| if text is not None: | |
| encoding = self.tokenizer( | |
| text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | |
| ) | |
| if images is not None: | |
| image_features = self.image_processor(images, return_tensors=return_tensors) | |
| if text is not None and images is not None: | |
| encoding["pixel_values"] = image_features.pixel_values | |
| return encoding | |
| elif text is not None: | |
| return encoding | |
| else: | |
| return BatchFeature(data=dict(**image_features), tensor_type=return_tensors) | |
| def decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to | |
| the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.decode(*args, **kwargs) | |
| def batch_decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please | |
| refer to the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.batch_decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip | |
| def model_input_names(self): | |
| tokenizer_input_names = self.tokenizer.model_input_names | |
| image_processor_input_names = self.image_processor.model_input_names | |
| return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |