Upload 2 files
Browse files
sgm/modules/autoencoding/lpips/loss/LICENSE
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Copyright (c) 2018, Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang
|
| 2 |
+
All rights reserved.
|
| 3 |
+
|
| 4 |
+
Redistribution and use in source and binary forms, with or without
|
| 5 |
+
modification, are permitted provided that the following conditions are met:
|
| 6 |
+
|
| 7 |
+
* Redistributions of source code must retain the above copyright notice, this
|
| 8 |
+
list of conditions and the following disclaimer.
|
| 9 |
+
|
| 10 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
| 11 |
+
this list of conditions and the following disclaimer in the documentation
|
| 12 |
+
and/or other materials provided with the distribution.
|
| 13 |
+
|
| 14 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 15 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 16 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 17 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 18 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 19 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 20 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 21 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 22 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 23 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
sgm/modules/autoencoding/lpips/loss/lpips.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
| 2 |
+
|
| 3 |
+
from collections import namedtuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torchvision import models
|
| 8 |
+
|
| 9 |
+
from ..util import get_ckpt_path
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class LPIPS(nn.Module):
|
| 13 |
+
# Learned perceptual metric
|
| 14 |
+
def __init__(self, use_dropout=True):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.scaling_layer = ScalingLayer()
|
| 17 |
+
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
| 18 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
| 19 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
| 20 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
| 21 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
| 22 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
| 23 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
| 24 |
+
self.load_from_pretrained()
|
| 25 |
+
for param in self.parameters():
|
| 26 |
+
param.requires_grad = False
|
| 27 |
+
|
| 28 |
+
def load_from_pretrained(self, name="vgg_lpips"):
|
| 29 |
+
ckpt = get_ckpt_path(name, "sgm/modules/autoencoding/lpips/loss")
|
| 30 |
+
self.load_state_dict(
|
| 31 |
+
torch.load(ckpt, map_location=torch.device("cpu")), strict=False
|
| 32 |
+
)
|
| 33 |
+
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
| 34 |
+
|
| 35 |
+
@classmethod
|
| 36 |
+
def from_pretrained(cls, name="vgg_lpips"):
|
| 37 |
+
if name != "vgg_lpips":
|
| 38 |
+
raise NotImplementedError
|
| 39 |
+
model = cls()
|
| 40 |
+
ckpt = get_ckpt_path(name)
|
| 41 |
+
model.load_state_dict(
|
| 42 |
+
torch.load(ckpt, map_location=torch.device("cpu")), strict=False
|
| 43 |
+
)
|
| 44 |
+
return model
|
| 45 |
+
|
| 46 |
+
def forward(self, input, target):
|
| 47 |
+
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
| 48 |
+
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
| 49 |
+
feats0, feats1, diffs = {}, {}, {}
|
| 50 |
+
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
| 51 |
+
for kk in range(len(self.chns)):
|
| 52 |
+
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(
|
| 53 |
+
outs1[kk]
|
| 54 |
+
)
|
| 55 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
| 56 |
+
|
| 57 |
+
res = [
|
| 58 |
+
spatial_average(lins[kk].model(diffs[kk]), keepdim=True)
|
| 59 |
+
for kk in range(len(self.chns))
|
| 60 |
+
]
|
| 61 |
+
val = res[0]
|
| 62 |
+
for l in range(1, len(self.chns)):
|
| 63 |
+
val += res[l]
|
| 64 |
+
return val
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class ScalingLayer(nn.Module):
|
| 68 |
+
def __init__(self):
|
| 69 |
+
super(ScalingLayer, self).__init__()
|
| 70 |
+
self.register_buffer(
|
| 71 |
+
"shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]
|
| 72 |
+
)
|
| 73 |
+
self.register_buffer(
|
| 74 |
+
"scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def forward(self, inp):
|
| 78 |
+
return (inp - self.shift) / self.scale
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class NetLinLayer(nn.Module):
|
| 82 |
+
"""A single linear layer which does a 1x1 conv"""
|
| 83 |
+
|
| 84 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
| 85 |
+
super(NetLinLayer, self).__init__()
|
| 86 |
+
layers = (
|
| 87 |
+
[
|
| 88 |
+
nn.Dropout(),
|
| 89 |
+
]
|
| 90 |
+
if (use_dropout)
|
| 91 |
+
else []
|
| 92 |
+
)
|
| 93 |
+
layers += [
|
| 94 |
+
nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
|
| 95 |
+
]
|
| 96 |
+
self.model = nn.Sequential(*layers)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class vgg16(torch.nn.Module):
|
| 100 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
| 101 |
+
super(vgg16, self).__init__()
|
| 102 |
+
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
| 103 |
+
self.slice1 = torch.nn.Sequential()
|
| 104 |
+
self.slice2 = torch.nn.Sequential()
|
| 105 |
+
self.slice3 = torch.nn.Sequential()
|
| 106 |
+
self.slice4 = torch.nn.Sequential()
|
| 107 |
+
self.slice5 = torch.nn.Sequential()
|
| 108 |
+
self.N_slices = 5
|
| 109 |
+
for x in range(4):
|
| 110 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
| 111 |
+
for x in range(4, 9):
|
| 112 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
| 113 |
+
for x in range(9, 16):
|
| 114 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
| 115 |
+
for x in range(16, 23):
|
| 116 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
| 117 |
+
for x in range(23, 30):
|
| 118 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
| 119 |
+
if not requires_grad:
|
| 120 |
+
for param in self.parameters():
|
| 121 |
+
param.requires_grad = False
|
| 122 |
+
|
| 123 |
+
def forward(self, X):
|
| 124 |
+
h = self.slice1(X)
|
| 125 |
+
h_relu1_2 = h
|
| 126 |
+
h = self.slice2(h)
|
| 127 |
+
h_relu2_2 = h
|
| 128 |
+
h = self.slice3(h)
|
| 129 |
+
h_relu3_3 = h
|
| 130 |
+
h = self.slice4(h)
|
| 131 |
+
h_relu4_3 = h
|
| 132 |
+
h = self.slice5(h)
|
| 133 |
+
h_relu5_3 = h
|
| 134 |
+
vgg_outputs = namedtuple(
|
| 135 |
+
"VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]
|
| 136 |
+
)
|
| 137 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
| 138 |
+
return out
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def normalize_tensor(x, eps=1e-10):
|
| 142 |
+
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
|
| 143 |
+
return x / (norm_factor + eps)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def spatial_average(x, keepdim=True):
|
| 147 |
+
return x.mean([2, 3], keepdim=keepdim)
|