Spaces:
Sleeping
Sleeping
Update chatbot_backend.py
Browse files- chatbot_backend.py +32 -40
chatbot_backend.py
CHANGED
|
@@ -1,49 +1,41 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
|
|
|
| 3 |
from langchain_community.document_loaders import TextLoader
|
| 4 |
-
from langchain.text_splitter import
|
| 5 |
-
from
|
| 6 |
-
from langchain.
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
try:
|
| 14 |
-
asyncio.get_running_loop()
|
| 15 |
-
except RuntimeError:
|
| 16 |
-
loop = asyncio.new_event_loop()
|
| 17 |
-
asyncio.set_event_loop(loop)
|
| 18 |
-
|
| 19 |
-
return GoogleGenerativeAIEmbeddings(
|
| 20 |
-
model="models/embedding-001",
|
| 21 |
-
google_api_key=google_api_key
|
| 22 |
-
)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
loader = TextLoader("data.txt")
|
| 26 |
docs = loader.load()
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
return result["answer"]
|
|
|
|
| 1 |
import os
|
| 2 |
+
from langchain_community.llms import Ollama
|
| 3 |
+
from langchain_community.embeddings import OllamaEmbeddings
|
| 4 |
from langchain_community.document_loaders import TextLoader
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain_community.vectorstores import FAISS
|
| 7 |
+
from langchain.memory import ConversationBufferMemory
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
|
| 10 |
+
# β
Memory
|
| 11 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 12 |
|
| 13 |
+
# β
LLM (Ollama model, e.g. llama3, mistral, phi3)
|
| 14 |
+
llm = Ollama(model="llama3")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# β
Load + Split Docs
|
| 17 |
+
loader = TextLoader("data.txt", encoding="utf-8")
|
| 18 |
docs = loader.load()
|
| 19 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 20 |
+
chunks = splitter.split_documents(docs)
|
| 21 |
+
|
| 22 |
+
# β
Embeddings + VectorStore
|
| 23 |
+
embeddings = OllamaEmbeddings(model="llama3")
|
| 24 |
+
vectorstore = FAISS.from_documents(documents=chunks, embedding=embeddings)
|
| 25 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 2})
|
| 26 |
+
|
| 27 |
+
# β
Conversational Retrieval Chain (with memory)
|
| 28 |
+
conversational_chain = ConversationalRetrievalChain.from_llm(
|
| 29 |
+
llm=llm,
|
| 30 |
+
retriever=retriever,
|
| 31 |
+
memory=memory,
|
| 32 |
+
return_source_documents=False
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# β
Ask bot function
|
| 36 |
+
def ask_bot(query: str) -> str:
|
| 37 |
+
try:
|
| 38 |
+
response = conversational_chain.invoke({"question": query})
|
| 39 |
+
return response["answer"]
|
| 40 |
+
except Exception as e:
|
| 41 |
+
return f"Error: {str(e)}"
|
|
|