customer-service-chatbot / chatbot_backend.py
Uamir's picture
Update chatbot_backend.py
ca0f9da verified
import os
import asyncio
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
google_api_key = os.getenv("GOOGLE_API_KEY")
# 🟒 Event loop safe embeddings initializer
def get_embeddings():
try:
asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key
)
# 🟒 Use loader safely
loader = TextLoader("data.txt")
docs = loader.load()
# 🟒 Split text into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(docs)
# 🟒 Create vectorstore with embeddings
embeddings = get_embeddings()
db = FAISS.from_documents(documents, embeddings)
# 🟒 Conversational chain
qa = ConversationalRetrievalChain.from_llm(
ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=google_api_key),
db.as_retriever()
)
# 🟒 Function to interact with bot
chat_history = []
def ask_bot(query: str):
global chat_history
result = qa({"question": query, "chat_history": chat_history})
chat_history.append((query, result["answer"]))
return result["answer"]