Spaces:
Running
Running
| """ | |
| Dumps things to tensorboard and console | |
| """ | |
| import datetime | |
| import logging | |
| import math | |
| import os | |
| from collections import defaultdict | |
| from pathlib import Path | |
| from typing import Optional, Union | |
| import matplotlib | |
| matplotlib.use('TkAgg') | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| from PIL import Image | |
| from pytz import timezone | |
| from torch.utils.tensorboard import SummaryWriter | |
| from .email_utils import EmailSender | |
| from .time_estimator import PartialTimeEstimator, TimeEstimator | |
| from .timezone import my_timezone | |
| def tensor_to_numpy(image: torch.Tensor): | |
| image_np = (image.numpy() * 255).astype('uint8') | |
| return image_np | |
| def detach_to_cpu(x: torch.Tensor): | |
| return x.detach().cpu() | |
| def fix_width_trunc(x: float): | |
| return ('{:.9s}'.format('{:0.9f}'.format(x))) | |
| def plot_spectrogram(spectrogram: np.ndarray, title=None, ylabel="freq_bin", ax=None): | |
| if ax is None: | |
| _, ax = plt.subplots(1, 1) | |
| if title is not None: | |
| ax.set_title(title) | |
| ax.set_ylabel(ylabel) | |
| ax.imshow(spectrogram, origin="lower", aspect="auto", interpolation="nearest") | |
| class TensorboardLogger: | |
| def __init__(self, | |
| exp_id: str, | |
| run_dir: Union[Path, str], | |
| py_logger: logging.Logger, | |
| *, | |
| is_rank0: bool = False, | |
| enable_email: bool = False): | |
| self.exp_id = exp_id | |
| self.run_dir = Path(run_dir) | |
| self.py_log = py_logger | |
| self.email_sender = EmailSender(exp_id, enable=(is_rank0 and enable_email)) | |
| if is_rank0: | |
| self.tb_log = SummaryWriter(run_dir) | |
| else: | |
| self.tb_log = None | |
| # Get current git info for logging | |
| try: | |
| import git | |
| repo = git.Repo(".") | |
| git_info = str(repo.active_branch) + ' ' + str(repo.head.commit.hexsha) | |
| except (ImportError, RuntimeError, TypeError): | |
| print('Failed to fetch git info. Defaulting to None') | |
| git_info = 'None' | |
| self.log_string('git', git_info) | |
| # log the SLURM job id if available | |
| job_id = os.environ.get('SLURM_JOB_ID', None) | |
| if job_id is not None: | |
| self.log_string('slurm_job_id', job_id) | |
| self.email_sender.send(f'Job {job_id} started', f'Job started {run_dir}') | |
| # used when logging metrics | |
| self.batch_timer: TimeEstimator = None | |
| self.data_timer: PartialTimeEstimator = None | |
| self.nan_count = defaultdict(int) | |
| def log_scalar(self, tag: str, x: float, it: int): | |
| if self.tb_log is None: | |
| return | |
| if math.isnan(x) and 'grad_norm' not in tag: | |
| self.nan_count[tag] += 1 | |
| if self.nan_count[tag] == 10: | |
| self.email_sender.send( | |
| f'Nan detected in {tag} @ {self.run_dir}', | |
| f'Nan detected in {tag} at iteration {it}; run_dir: {self.run_dir}') | |
| else: | |
| self.nan_count[tag] = 0 | |
| self.tb_log.add_scalar(tag, x, it) | |
| def log_metrics(self, | |
| prefix: str, | |
| metrics: dict[str, float], | |
| it: int, | |
| ignore_timer: bool = False): | |
| msg = f'{self.exp_id}-{prefix} - it {it:6d}: ' | |
| metrics_msg = '' | |
| for k, v in sorted(metrics.items()): | |
| self.log_scalar(f'{prefix}/{k}', v, it) | |
| metrics_msg += f'{k: >10}:{v:.7f},\t' | |
| if self.batch_timer is not None and not ignore_timer: | |
| self.batch_timer.update() | |
| avg_time = self.batch_timer.get_and_reset_avg_time() | |
| data_time = self.data_timer.get_and_reset_avg_time() | |
| # add time to tensorboard | |
| self.log_scalar(f'{prefix}/avg_time', avg_time, it) | |
| self.log_scalar(f'{prefix}/data_time', data_time, it) | |
| est = self.batch_timer.get_est_remaining(it) | |
| est = datetime.timedelta(seconds=est) | |
| if est.days > 0: | |
| remaining_str = f'{est.days}d {est.seconds // 3600}h' | |
| else: | |
| remaining_str = f'{est.seconds // 3600}h {(est.seconds%3600) // 60}m' | |
| eta = datetime.datetime.now(timezone(my_timezone)) + est | |
| eta_str = eta.strftime('%Y-%m-%d %H:%M:%S %Z%z') | |
| time_msg = f'avg_time:{avg_time:.3f},data:{data_time:.3f},remaining:{remaining_str},eta:{eta_str},\t' | |
| msg = f'{msg} {time_msg}' | |
| msg = f'{msg} {metrics_msg}' | |
| self.py_log.info(msg) | |
| def log_histogram(self, tag: str, hist: torch.Tensor, it: int): | |
| if self.tb_log is None: | |
| return | |
| # hist should be a 1D tensor | |
| hist = hist.cpu().numpy() | |
| fig, ax = plt.subplots() | |
| x_range = np.linspace(0, 1, len(hist)) | |
| ax.bar(x_range, hist, width=1 / (len(hist) - 1)) | |
| ax.set_xticks(x_range) | |
| ax.set_xticklabels(x_range) | |
| plt.tight_layout() | |
| self.tb_log.add_figure(tag, fig, it) | |
| plt.close() | |
| def log_image(self, prefix: str, tag: str, image: np.ndarray, it: int): | |
| image_dir = self.run_dir / f'{prefix}_images' | |
| image_dir.mkdir(exist_ok=True, parents=True) | |
| image = Image.fromarray(image) | |
| image.save(image_dir / f'{it:09d}_{tag}.png') | |
| def log_audio(self, | |
| prefix: str, | |
| tag: str, | |
| waveform: torch.Tensor, | |
| it: Optional[int] = None, | |
| *, | |
| subdir: Optional[Path] = None, | |
| sample_rate: int = 16000) -> Path: | |
| if subdir is None: | |
| audio_dir = self.run_dir / prefix | |
| else: | |
| audio_dir = self.run_dir / subdir / prefix | |
| audio_dir.mkdir(exist_ok=True, parents=True) | |
| if it is None: | |
| name = f'{tag}.flac' | |
| else: | |
| name = f'{it:09d}_{tag}.flac' | |
| torchaudio.save(audio_dir / name, | |
| waveform.cpu().float(), | |
| sample_rate=sample_rate, | |
| channels_first=True) | |
| return Path(audio_dir) | |
| def log_spectrogram( | |
| self, | |
| prefix: str, | |
| tag: str, | |
| spec: torch.Tensor, | |
| it: Optional[int], | |
| *, | |
| subdir: Optional[Path] = None, | |
| ): | |
| if subdir is None: | |
| spec_dir = self.run_dir / prefix | |
| else: | |
| spec_dir = self.run_dir / subdir / prefix | |
| spec_dir.mkdir(exist_ok=True, parents=True) | |
| if it is None: | |
| name = f'{tag}.png' | |
| else: | |
| name = f'{it:09d}_{tag}.png' | |
| plot_spectrogram(spec.cpu().float()) | |
| plt.tight_layout() | |
| plt.savefig(spec_dir / name) | |
| plt.close() | |
| def log_string(self, tag: str, x: str): | |
| self.py_log.info(f'{tag} - {x}') | |
| if self.tb_log is None: | |
| return | |
| self.tb_log.add_text(tag, x) | |
| def debug(self, x): | |
| self.py_log.debug(x) | |
| def info(self, x): | |
| self.py_log.info(x) | |
| def warning(self, x): | |
| self.py_log.warning(x) | |
| def error(self, x): | |
| self.py_log.error(x) | |
| def critical(self, x): | |
| self.py_log.critical(x) | |
| self.email_sender.send(f'Error occurred in {self.run_dir}', x) | |
| def complete(self): | |
| self.email_sender.send(f'Job completed in {self.run_dir}', 'Job completed') | |