Spaces:
Running
Running
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import gc | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import types | |
| from contextlib import contextmanager | |
| from functools import partial | |
| from mmgp import offload | |
| import torch | |
| import torch.nn as nn | |
| import torch.cuda.amp as amp | |
| import torch.distributed as dist | |
| import numpy as np | |
| from tqdm import tqdm | |
| from PIL import Image | |
| import torchvision.transforms.functional as TF | |
| import torch.nn.functional as F | |
| from .distributed.fsdp import shard_model | |
| from .modules.model import WanModel | |
| from mmgp.offload import get_cache, clear_caches | |
| from .modules.t5 import T5EncoderModel | |
| from .modules.vae import WanVAE | |
| from .modules.vae2_2 import Wan2_2_VAE | |
| from .modules.clip import CLIPModel | |
| from shared.utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
| get_sampling_sigmas, retrieve_timesteps) | |
| from shared.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| from .modules.posemb_layers import get_rotary_pos_embed, get_nd_rotary_pos_embed | |
| from shared.utils.vace_preprocessor import VaceVideoProcessor | |
| from shared.utils.basic_flowmatch import FlowMatchScheduler | |
| from shared.utils.lcm_scheduler import LCMScheduler | |
| from shared.utils.utils import get_outpainting_frame_location, resize_lanczos, calculate_new_dimensions, convert_image_to_tensor, fit_image_into_canvas | |
| from .multitalk.multitalk_utils import MomentumBuffer, adaptive_projected_guidance, match_and_blend_colors, match_and_blend_colors_with_mask | |
| from shared.utils.audio_video import save_video | |
| from mmgp import safetensors2 | |
| from shared.utils import files_locator as fl | |
| def optimized_scale(positive_flat, negative_flat): | |
| # Calculate dot production | |
| dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
| # Squared norm of uncondition | |
| squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
| # st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
| st_star = dot_product / squared_norm | |
| return st_star | |
| def timestep_transform(t, shift=5.0, num_timesteps=1000 ): | |
| t = t / num_timesteps | |
| # shift the timestep based on ratio | |
| new_t = shift * t / (1 + (shift - 1) * t) | |
| new_t = new_t * num_timesteps | |
| return new_t | |
| class WanAny2V: | |
| def __init__( | |
| self, | |
| config, | |
| checkpoint_dir, | |
| model_filename = None, | |
| submodel_no_list = None, | |
| model_type = None, | |
| model_def = None, | |
| base_model_type = None, | |
| text_encoder_filename = None, | |
| quantizeTransformer = False, | |
| save_quantized = False, | |
| dtype = torch.bfloat16, | |
| VAE_dtype = torch.float32, | |
| mixed_precision_transformer = False | |
| ): | |
| self.device = torch.device(f"cuda") | |
| self.config = config | |
| self.VAE_dtype = VAE_dtype | |
| self.dtype = dtype | |
| self.num_train_timesteps = config.num_train_timesteps | |
| self.param_dtype = config.param_dtype | |
| self.model_def = model_def | |
| self.model2 = None | |
| self.transformer_switch = model_def.get("URLs2", None) is not None | |
| self.text_encoder = T5EncoderModel( | |
| text_len=config.text_len, | |
| dtype=config.t5_dtype, | |
| device=torch.device('cpu'), | |
| checkpoint_path=text_encoder_filename, | |
| tokenizer_path=fl.locate_folder("umt5-xxl"), | |
| shard_fn= None) | |
| # base_model_type = "i2v2_2" | |
| if hasattr(config, "clip_checkpoint") and not base_model_type in ["i2v_2_2", "i2v_2_2_multitalk"] or base_model_type in ["animate"]: | |
| self.clip = CLIPModel( | |
| dtype=config.clip_dtype, | |
| device=self.device, | |
| checkpoint_path=fl.locate_file(config.clip_checkpoint), | |
| tokenizer_path=fl.locate_folder("xlm-roberta-large")) | |
| ignore_unused_weights = model_def.get("ignore_unused_weights", False) | |
| if base_model_type in ["ti2v_2_2", "lucy_edit"]: | |
| self.vae_stride = (4, 16, 16) | |
| vae_checkpoint = "Wan2.2_VAE.safetensors" | |
| vae = Wan2_2_VAE | |
| else: | |
| self.vae_stride = config.vae_stride | |
| vae_checkpoint = "Wan2.1_VAE.safetensors" | |
| vae = WanVAE | |
| self.patch_size = config.patch_size | |
| self.vae = vae( vae_pth=fl.locate_file(vae_checkpoint), dtype= VAE_dtype, device="cpu") | |
| self.vae.device = self.device | |
| # config_filename= "configs/t2v_1.3B.json" | |
| # import json | |
| # with open(config_filename, 'r', encoding='utf-8') as f: | |
| # config = json.load(f) | |
| # sd = safetensors2.torch_load_file(xmodel_filename) | |
| # model_filename = "c:/temp/wan2.2i2v/low/diffusion_pytorch_model-00001-of-00006.safetensors" | |
| base_config_file = f"models/wan/configs/{base_model_type}.json" | |
| forcedConfigPath = base_config_file if len(model_filename) > 1 else None | |
| # forcedConfigPath = base_config_file = f"configs/flf2v_720p.json" | |
| # model_filename[1] = xmodel_filename | |
| self.model = self.model2 = None | |
| source = model_def.get("source", None) | |
| source2 = model_def.get("source2", None) | |
| module_source = model_def.get("module_source", None) | |
| module_source2 = model_def.get("module_source2", None) | |
| kwargs= { "ignore_unused_weights": ignore_unused_weights, "writable_tensors": False, "default_dtype": dtype } | |
| if module_source is not None: | |
| self.model = offload.fast_load_transformers_model(model_filename[:1] + [module_source], modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, **kwargs) | |
| if module_source2 is not None: | |
| self.model2 = offload.fast_load_transformers_model(model_filename[1:2] + [module_source2], modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, **kwargs) | |
| if source is not None: | |
| self.model = offload.fast_load_transformers_model(source, modelClass=WanModel, writable_tensors= False, forcedConfigPath= base_config_file) | |
| if source2 is not None: | |
| self.model2 = offload.fast_load_transformers_model(source2, modelClass=WanModel, writable_tensors= False, forcedConfigPath= base_config_file) | |
| if self.model is not None or self.model2 is not None: | |
| from wgp import save_model | |
| from mmgp.safetensors2 import torch_load_file | |
| else: | |
| if self.transformer_switch: | |
| if 0 in submodel_no_list[2:] and 1 in submodel_no_list[2:]: | |
| raise Exception("Shared and non shared modules at the same time across multipe models is not supported") | |
| if 0 in submodel_no_list[2:]: | |
| shared_modules= {} | |
| self.model = offload.fast_load_transformers_model(model_filename[:1], modules = model_filename[2:], modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, return_shared_modules= shared_modules, **kwargs) | |
| self.model2 = offload.fast_load_transformers_model(model_filename[1:2], modules = shared_modules, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, **kwargs) | |
| shared_modules = None | |
| else: | |
| modules_for_1 =[ file_name for file_name, submodel_no in zip(model_filename[2:],submodel_no_list[2:] ) if submodel_no ==1 ] | |
| modules_for_2 =[ file_name for file_name, submodel_no in zip(model_filename[2:],submodel_no_list[2:] ) if submodel_no ==2 ] | |
| self.model = offload.fast_load_transformers_model(model_filename[:1], modules = modules_for_1, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, **kwargs) | |
| self.model2 = offload.fast_load_transformers_model(model_filename[1:2], modules = modules_for_2, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, **kwargs) | |
| else: | |
| self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, **kwargs) | |
| if self.model is not None: | |
| self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
| offload.change_dtype(self.model, dtype, True) | |
| self.model.eval().requires_grad_(False) | |
| if self.model2 is not None: | |
| self.model2.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
| offload.change_dtype(self.model2, dtype, True) | |
| self.model2.eval().requires_grad_(False) | |
| if module_source is not None: | |
| save_model(self.model, model_type, dtype, None, is_module=True, filter=list(torch_load_file(module_source)), module_source_no=1) | |
| if module_source2 is not None: | |
| save_model(self.model2, model_type, dtype, None, is_module=True, filter=list(torch_load_file(module_source2)), module_source_no=2) | |
| if not source is None: | |
| save_model(self.model, model_type, dtype, None, submodel_no= 1) | |
| if not source2 is None: | |
| save_model(self.model2, model_type, dtype, None, submodel_no= 2) | |
| if save_quantized: | |
| from wgp import save_quantized_model | |
| if self.model is not None: | |
| save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) | |
| if self.model2 is not None: | |
| save_quantized_model(self.model2, model_type, model_filename[1], dtype, base_config_file, submodel_no=2) | |
| self.sample_neg_prompt = config.sample_neg_prompt | |
| if hasattr(self.model, "vace_blocks"): | |
| self.adapt_vace_model(self.model) | |
| if self.model2 is not None: self.adapt_vace_model(self.model2) | |
| if hasattr(self.model, "face_adapter"): | |
| self.adapt_animate_model(self.model) | |
| if self.model2 is not None: self.adapt_animate_model(self.model2) | |
| self.num_timesteps = 1000 | |
| self.use_timestep_transform = True | |
| def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None): | |
| ref_images = [ref_images] * len(frames) | |
| if masks is None: | |
| latents = self.vae.encode(frames, tile_size = tile_size) | |
| else: | |
| inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)] | |
| reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)] | |
| inactive = self.vae.encode(inactive, tile_size = tile_size) | |
| if overlapped_latents != None and False : # disabled as quality seems worse | |
| # inactive[0][:, 0:1] = self.vae.encode([frames[0][:, 0:1]], tile_size = tile_size)[0] # redundant | |
| for t in inactive: | |
| t[:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents | |
| overlapped_latents[: 0:1] = inactive[0][: 0:1] | |
| reactive = self.vae.encode(reactive, tile_size = tile_size) | |
| latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)] | |
| cat_latents = [] | |
| for latent, refs in zip(latents, ref_images): | |
| if refs is not None: | |
| if masks is None: | |
| ref_latent = self.vae.encode(refs, tile_size = tile_size) | |
| else: | |
| ref_latent = self.vae.encode(refs, tile_size = tile_size) | |
| ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent] | |
| assert all([x.shape[1] == 1 for x in ref_latent]) | |
| latent = torch.cat([*ref_latent, latent], dim=1) | |
| cat_latents.append(latent) | |
| return cat_latents | |
| def vace_encode_masks(self, masks, ref_images=None): | |
| ref_images = [ref_images] * len(masks) | |
| result_masks = [] | |
| for mask, refs in zip(masks, ref_images): | |
| c, depth, height, width = mask.shape | |
| new_depth = int((depth + 3) // self.vae_stride[0]) # nb latents token without (ref tokens not included) | |
| height = 2 * (int(height) // (self.vae_stride[1] * 2)) | |
| width = 2 * (int(width) // (self.vae_stride[2] * 2)) | |
| # reshape | |
| mask = mask[0, :, :, :] | |
| mask = mask.view( | |
| depth, height, self.vae_stride[1], width, self.vae_stride[1] | |
| ) # depth, height, 8, width, 8 | |
| mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width | |
| mask = mask.reshape( | |
| self.vae_stride[1] * self.vae_stride[2], depth, height, width | |
| ) # 8*8, depth, height, width | |
| # interpolation | |
| mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0) | |
| if refs is not None: | |
| length = len(refs) | |
| mask_pad = torch.zeros(mask.shape[0], length, *mask.shape[-2:], dtype=mask.dtype, device=mask.device) | |
| mask = torch.cat((mask_pad, mask), dim=1) | |
| result_masks.append(mask) | |
| return result_masks | |
| def get_vae_latents(self, ref_images, device, tile_size= 0): | |
| ref_vae_latents = [] | |
| for ref_image in ref_images: | |
| ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device) | |
| img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size) | |
| ref_vae_latents.append(img_vae_latent[0]) | |
| return torch.cat(ref_vae_latents, dim=1) | |
| def get_i2v_mask(self, lat_h, lat_w, nb_frames_unchanged=0, mask_pixel_values=None, lat_t =0, device="cuda"): | |
| if mask_pixel_values is None: | |
| msk = torch.zeros(1, (lat_t-1) * 4 + 1, lat_h, lat_w, device=device) | |
| else: | |
| msk = F.interpolate(mask_pixel_values.to(device), size=(lat_h, lat_w), mode='nearest') | |
| if nb_frames_unchanged >0: | |
| msk[:, :nb_frames_unchanged] = 1 | |
| msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
| msk = msk.transpose(1,2)[0] | |
| return msk | |
| def encode_reference_images(self, ref_images, ref_prompt="image of a face", any_guidance= False, tile_size = None): | |
| ref_images = [convert_image_to_tensor(img).unsqueeze(1).to(device=self.device, dtype=self.dtype) for img in ref_images] | |
| shape = ref_images[0].shape | |
| freqs = get_rotary_pos_embed( (len(ref_images) , shape[-2] // 8, shape[-1] // 8 )) | |
| # batch_ref_image: [B, C, F, H, W] | |
| vae_feat = self.vae.encode(ref_images, tile_size = tile_size) | |
| vae_feat = torch.cat( vae_feat, dim=1).unsqueeze(0) | |
| if any_guidance: | |
| vae_feat_uncond = self.vae.encode([ref_images[0] * 0], tile_size = tile_size) * len(ref_images) | |
| vae_feat_uncond = torch.cat( vae_feat_uncond, dim=1).unsqueeze(0) | |
| context = self.text_encoder([ref_prompt], self.device)[0].to(self.dtype) | |
| context = torch.cat([context, context.new_zeros(self.model.text_len -context.size(0), context.size(1)) ]).unsqueeze(0) | |
| clear_caches() | |
| get_cache("lynx_ref_buffer").update({ 0: {}, 1: {} }) | |
| ref_buffer = self.model( | |
| pipeline =self, | |
| x = [vae_feat, vae_feat_uncond] if any_guidance else [vae_feat], | |
| context = [context, context] if any_guidance else [context], | |
| freqs= freqs, | |
| t=torch.stack([torch.tensor(0, dtype=torch.float)]).to(self.device), | |
| lynx_feature_extractor = True, | |
| ) | |
| clear_caches() | |
| return ref_buffer[0], (ref_buffer[1] if any_guidance else None) | |
| def generate(self, | |
| input_prompt, | |
| input_frames= None, | |
| input_frames2= None, | |
| input_masks = None, | |
| input_masks2 = None, | |
| input_ref_images = None, | |
| input_ref_masks = None, | |
| input_faces = None, | |
| input_video = None, | |
| image_start = None, | |
| image_end = None, | |
| denoising_strength = 1.0, | |
| target_camera=None, | |
| context_scale=None, | |
| width = 1280, | |
| height = 720, | |
| fit_into_canvas = True, | |
| frame_num=81, | |
| batch_size = 1, | |
| shift=5.0, | |
| sample_solver='unipc', | |
| sampling_steps=50, | |
| guide_scale=5.0, | |
| guide2_scale = 5.0, | |
| guide3_scale = 5.0, | |
| switch_threshold = 0, | |
| switch2_threshold = 0, | |
| guide_phases= 1 , | |
| model_switch_phase = 1, | |
| n_prompt="", | |
| seed=-1, | |
| callback = None, | |
| enable_RIFLEx = None, | |
| VAE_tile_size = 0, | |
| joint_pass = False, | |
| slg_layers = None, | |
| slg_start = 0.0, | |
| slg_end = 1.0, | |
| cfg_star_switch = True, | |
| cfg_zero_step = 5, | |
| audio_scale=None, | |
| audio_cfg_scale=None, | |
| audio_proj=None, | |
| audio_context_lens=None, | |
| overlapped_latents = None, | |
| return_latent_slice = None, | |
| overlap_noise = 0, | |
| conditioning_latents_size = 0, | |
| keep_frames_parsed = [], | |
| model_type = None, | |
| model_mode = None, | |
| loras_slists = None, | |
| NAG_scale = 0, | |
| NAG_tau = 3.5, | |
| NAG_alpha = 0.5, | |
| offloadobj = None, | |
| apg_switch = False, | |
| speakers_bboxes = None, | |
| color_correction_strength = 1, | |
| prefix_frames_count = 0, | |
| image_mode = 0, | |
| window_no = 0, | |
| set_header_text = None, | |
| pre_video_frame = None, | |
| video_prompt_type= "", | |
| original_input_ref_images = [], | |
| face_arc_embeds = None, | |
| control_scale_alt = 1., | |
| **bbargs | |
| ): | |
| if sample_solver =="euler": | |
| # prepare timesteps | |
| timesteps = list(np.linspace(self.num_timesteps, 1, sampling_steps, dtype=np.float32)) | |
| timesteps.append(0.) | |
| timesteps = [torch.tensor([t], device=self.device) for t in timesteps] | |
| if self.use_timestep_transform: | |
| timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps][:-1] | |
| timesteps = torch.tensor(timesteps) | |
| sample_scheduler = None | |
| elif sample_solver == 'causvid': | |
| sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True) | |
| timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74])[:sampling_steps].to(self.device) | |
| sample_scheduler.timesteps =timesteps | |
| sample_scheduler.sigmas = torch.cat([sample_scheduler.timesteps / 1000, torch.tensor([0.], device=self.device)]) | |
| elif sample_solver == 'unipc' or sample_solver == "": | |
| sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False) | |
| sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift) | |
| timesteps = sample_scheduler.timesteps | |
| elif sample_solver == 'dpm++': | |
| sample_scheduler = FlowDPMSolverMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
| timesteps, _ = retrieve_timesteps( | |
| sample_scheduler, | |
| device=self.device, | |
| sigmas=sampling_sigmas) | |
| elif sample_solver == 'lcm': | |
| # LCM + LTX scheduler: Latent Consistency Model with RectifiedFlow | |
| # Optimized for Lightning LoRAs with ultra-fast 2-8 step inference | |
| effective_steps = min(sampling_steps, 8) # LCM works best with few steps | |
| sample_scheduler = LCMScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| num_inference_steps=effective_steps, | |
| shift=shift | |
| ) | |
| sample_scheduler.set_timesteps(effective_steps, device=self.device, shift=shift) | |
| timesteps = sample_scheduler.timesteps | |
| else: | |
| raise NotImplementedError(f"Unsupported Scheduler {sample_solver}") | |
| original_timesteps = timesteps | |
| seed_g = torch.Generator(device=self.device) | |
| seed_g.manual_seed(seed) | |
| image_outputs = image_mode == 1 | |
| kwargs = {'pipeline': self, 'callback': callback} | |
| color_reference_frame = None | |
| if self._interrupt: | |
| return None | |
| # Text Encoder | |
| if n_prompt == "": | |
| n_prompt = self.sample_neg_prompt | |
| text_len = self.model.text_len | |
| any_guidance_at_all = guide_scale > 1 or guide2_scale > 1 and guide_phases >=2 or guide3_scale > 1 and guide_phases >=3 | |
| context = self.text_encoder([input_prompt], self.device)[0].to(self.dtype) | |
| context = torch.cat([context, context.new_zeros(text_len -context.size(0), context.size(1)) ]).unsqueeze(0) | |
| if NAG_scale > 1 or any_guidance_at_all: | |
| context_null = self.text_encoder([n_prompt], self.device)[0].to(self.dtype) | |
| context_null = torch.cat([context_null, context_null.new_zeros(text_len -context_null.size(0), context_null.size(1)) ]).unsqueeze(0) | |
| else: | |
| context_null = None | |
| if input_video is not None: height, width = input_video.shape[-2:] | |
| # NAG_prompt = "static, low resolution, blurry" | |
| # context_NAG = self.text_encoder([NAG_prompt], self.device)[0] | |
| # context_NAG = context_NAG.to(self.dtype) | |
| # context_NAG = torch.cat([context_NAG, context_NAG.new_zeros(text_len -context_NAG.size(0), context_NAG.size(1)) ]).unsqueeze(0) | |
| # from mmgp import offload | |
| # offloadobj.unload_all() | |
| offload.shared_state.update({"_nag_scale" : NAG_scale, "_nag_tau" : NAG_tau, "_nag_alpha": NAG_alpha }) | |
| if NAG_scale > 1: context = torch.cat([context, context_null], dim=0) | |
| # if NAG_scale > 1: context = torch.cat([context, context_NAG], dim=0) | |
| if self._interrupt: return None | |
| vace = model_type in ["vace_1.3B","vace_14B", "vace_14B_2_2", "vace_multitalk_14B", "vace_standin_14B", "vace_lynx_14B"] | |
| phantom = model_type in ["phantom_1.3B", "phantom_14B"] | |
| fantasy = model_type in ["fantasy"] | |
| multitalk = model_type in ["multitalk", "infinitetalk", "vace_multitalk_14B", "i2v_2_2_multitalk"] | |
| infinitetalk = model_type in ["infinitetalk"] | |
| standin = model_type in ["standin", "vace_standin_14B"] | |
| lynx = model_type in ["lynx_lite", "lynx", "vace_lynx_lite_14B", "vace_lynx_14B"] | |
| recam = model_type in ["recam_1.3B"] | |
| ti2v = model_type in ["ti2v_2_2", "lucy_edit"] | |
| lucy_edit= model_type in ["lucy_edit"] | |
| animate= model_type in ["animate"] | |
| start_step_no = 0 | |
| ref_images_count = 0 | |
| trim_frames = 0 | |
| extended_overlapped_latents = clip_image_start = clip_image_end = image_mask_latents = None | |
| no_noise_latents_injection = infinitetalk | |
| timestep_injection = False | |
| lat_frames = int((frame_num - 1) // self.vae_stride[0]) + 1 | |
| extended_input_dim = 0 | |
| ref_images_before = False | |
| # image2video | |
| if model_type in ["i2v", "i2v_2_2", "fun_inp_1.3B", "fun_inp", "fantasy", "multitalk", "infinitetalk", "i2v_2_2_multitalk", "flf2v_720p"]: | |
| any_end_frame = False | |
| if infinitetalk: | |
| new_shot = "0" in video_prompt_type | |
| if input_frames is not None: | |
| image_ref = input_frames[:, 0] | |
| else: | |
| if input_ref_images is None: | |
| if pre_video_frame is None: raise Exception("Missing Reference Image") | |
| input_ref_images, new_shot = [pre_video_frame], False | |
| new_shot = new_shot and window_no <= len(input_ref_images) | |
| image_ref = convert_image_to_tensor(input_ref_images[ min(window_no, len(input_ref_images))-1 ]) | |
| if new_shot or input_video is None: | |
| input_video = image_ref.unsqueeze(1) | |
| else: | |
| color_correction_strength = 0 #disable color correction as transition frames between shots may have a complete different color level than the colors of the new shot | |
| _ , preframes_count, height, width = input_video.shape | |
| input_video = input_video.to(device=self.device).to(dtype= self.VAE_dtype) | |
| if infinitetalk: | |
| image_start = image_ref.to(input_video) | |
| control_pre_frames_count = 1 | |
| control_video = image_start.unsqueeze(1) | |
| else: | |
| image_start = input_video[:, -1] | |
| control_pre_frames_count = preframes_count | |
| control_video = input_video | |
| color_reference_frame = image_start.unsqueeze(1).clone() | |
| any_end_frame = image_end is not None | |
| add_frames_for_end_image = any_end_frame and model_type == "i2v" | |
| if any_end_frame: | |
| color_correction_strength = 0 #disable color correction as transition frames between shots may have a complete different color level than the colors of the new shot | |
| if add_frames_for_end_image: | |
| frame_num +=1 | |
| lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2) | |
| trim_frames = 1 | |
| lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2] | |
| if image_end is not None: | |
| img_end_frame = image_end.unsqueeze(1).to(self.device) | |
| clip_image_start, clip_image_end = image_start, image_end | |
| if any_end_frame: | |
| enc= torch.concat([ | |
| control_video, | |
| torch.zeros( (3, frame_num-control_pre_frames_count-1, height, width), device=self.device, dtype= self.VAE_dtype), | |
| img_end_frame, | |
| ], dim=1).to(self.device) | |
| else: | |
| enc= torch.concat([ | |
| control_video, | |
| torch.zeros( (3, frame_num-control_pre_frames_count, height, width), device=self.device, dtype= self.VAE_dtype) | |
| ], dim=1).to(self.device) | |
| image_start = image_end = img_end_frame = image_ref = control_video = None | |
| msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device) | |
| if any_end_frame: | |
| msk[:, control_pre_frames_count: -1] = 0 | |
| if add_frames_for_end_image: | |
| msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1) | |
| else: | |
| msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
| else: | |
| msk[:, control_pre_frames_count:] = 0 | |
| msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
| msk = msk.transpose(1, 2)[0] | |
| lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] | |
| y = torch.concat([msk, lat_y]) | |
| overlapped_latents_frames_num = int(1 + (preframes_count-1) // 4) | |
| # if overlapped_latents != None: | |
| if overlapped_latents_frames_num > 0: | |
| # disabled because looks worse | |
| if False and overlapped_latents_frames_num > 1: lat_y[:, :, 1:overlapped_latents_frames_num] = overlapped_latents[:, 1:] | |
| if infinitetalk: | |
| lat_y = self.vae.encode([input_video], VAE_tile_size)[0] | |
| extended_overlapped_latents = lat_y[:, :overlapped_latents_frames_num].clone().unsqueeze(0) | |
| lat_y = input_video = None | |
| kwargs.update({ 'y': y}) | |
| # Animate | |
| if animate: | |
| pose_pixels = input_frames * input_masks | |
| input_masks = 1. - input_masks | |
| pose_pixels -= input_masks | |
| pose_latents = self.vae.encode([pose_pixels], VAE_tile_size)[0].unsqueeze(0) | |
| input_frames = input_frames * input_masks | |
| if not "X" in video_prompt_type: input_frames += input_masks - 1 # masked area should black (-1) in background frames | |
| # input_frames = input_frames[:, :1].expand(-1, input_frames.shape[1], -1, -1) | |
| if prefix_frames_count > 0: | |
| input_frames[:, :prefix_frames_count] = input_video | |
| input_masks[:, :prefix_frames_count] = 1 | |
| # save_video(pose_pixels, "pose.mp4") | |
| # save_video(input_frames, "input_frames.mp4") | |
| # save_video(input_masks, "input_masks.mp4", value_range=(0,1)) | |
| lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2] | |
| msk_ref = self.get_i2v_mask(lat_h, lat_w, nb_frames_unchanged=1,lat_t=1, device=self.device) | |
| msk_control = self.get_i2v_mask(lat_h, lat_w, nb_frames_unchanged=0, mask_pixel_values=input_masks, device=self.device) | |
| msk = torch.concat([msk_ref, msk_control], dim=1) | |
| image_ref = input_ref_images[0].to(self.device) | |
| clip_image_start = image_ref.squeeze(1) | |
| lat_y = torch.concat(self.vae.encode([image_ref, input_frames.to(self.device)], VAE_tile_size), dim=1) | |
| y = torch.concat([msk, lat_y]) | |
| kwargs.update({ 'y': y, 'pose_latents': pose_latents}) | |
| face_pixel_values = input_faces.unsqueeze(0) | |
| lat_y = msk = msk_control = msk_ref = pose_pixels = None | |
| ref_images_before = True | |
| ref_images_count = 1 | |
| lat_frames = int((input_frames.shape[1] - 1) // self.vae_stride[0]) + 1 | |
| # Clip image | |
| if hasattr(self, "clip") and clip_image_start is not None: | |
| clip_image_size = self.clip.model.image_size | |
| clip_image_start = resize_lanczos(clip_image_start, clip_image_size, clip_image_size) | |
| clip_image_end = resize_lanczos(clip_image_end, clip_image_size, clip_image_size) if clip_image_end is not None else clip_image_start | |
| if model_type == "flf2v_720p": | |
| clip_context = self.clip.visual([clip_image_start[:, None, :, :], clip_image_end[:, None, :, :] if clip_image_end is not None else clip_image_start[:, None, :, :]]) | |
| else: | |
| clip_context = self.clip.visual([clip_image_start[:, None, :, :]]) | |
| clip_image_start = clip_image_end = None | |
| kwargs.update({'clip_fea': clip_context}) | |
| # Recam Master & Lucy Edit | |
| if recam or lucy_edit: | |
| frame_num, height,width = input_frames.shape[-3:] | |
| lat_frames = int((frame_num - 1) // self.vae_stride[0]) + 1 | |
| frame_num = (lat_frames -1) * self.vae_stride[0] + 1 | |
| input_frames = input_frames[:, :frame_num].to(dtype=self.dtype , device=self.device) | |
| extended_latents = self.vae.encode([input_frames])[0].unsqueeze(0) #.to(dtype=self.dtype, device=self.device) | |
| extended_input_dim = 2 if recam else 1 | |
| del input_frames | |
| if recam: | |
| # Process target camera (recammaster) | |
| target_camera = model_mode | |
| from shared.utils.cammmaster_tools import get_camera_embedding | |
| cam_emb = get_camera_embedding(target_camera) | |
| cam_emb = cam_emb.to(dtype=self.dtype, device=self.device) | |
| kwargs['cam_emb'] = cam_emb | |
| # Video 2 Video | |
| if "G" in video_prompt_type and input_frames != None: | |
| height, width = input_frames.shape[-2:] | |
| source_latents = self.vae.encode([input_frames])[0].unsqueeze(0) | |
| injection_denoising_step = 0 | |
| inject_from_start = False | |
| if input_frames != None and denoising_strength < 1 : | |
| color_reference_frame = input_frames[:, -1:].clone() | |
| if prefix_frames_count > 0: | |
| overlapped_frames_num = prefix_frames_count | |
| overlapped_latents_frames_num = (overlapped_frames_num -1 // 4) + 1 | |
| # overlapped_latents_frames_num = overlapped_latents.shape[2] | |
| # overlapped_frames_num = (overlapped_latents_frames_num-1) * 4 + 1 | |
| else: | |
| overlapped_latents_frames_num = overlapped_frames_num = 0 | |
| if len(keep_frames_parsed) == 0 or image_outputs or (overlapped_frames_num + len(keep_frames_parsed)) == input_frames.shape[1] and all(keep_frames_parsed) : keep_frames_parsed = [] | |
| injection_denoising_step = int( round(sampling_steps * (1. - denoising_strength),4) ) | |
| latent_keep_frames = [] | |
| if source_latents.shape[2] < lat_frames or len(keep_frames_parsed) > 0: | |
| inject_from_start = True | |
| if len(keep_frames_parsed) >0 : | |
| if overlapped_frames_num > 0: keep_frames_parsed = [True] * overlapped_frames_num + keep_frames_parsed | |
| latent_keep_frames =[keep_frames_parsed[0]] | |
| for i in range(1, len(keep_frames_parsed), 4): | |
| latent_keep_frames.append(all(keep_frames_parsed[i:i+4])) | |
| else: | |
| timesteps = timesteps[injection_denoising_step:] | |
| start_step_no = injection_denoising_step | |
| if hasattr(sample_scheduler, "timesteps"): sample_scheduler.timesteps = timesteps | |
| if hasattr(sample_scheduler, "sigmas"): sample_scheduler.sigmas= sample_scheduler.sigmas[injection_denoising_step:] | |
| injection_denoising_step = 0 | |
| if input_masks is not None and not "U" in video_prompt_type: | |
| image_mask_latents = torch.nn.functional.interpolate(input_masks, size= source_latents.shape[-2:], mode="nearest").unsqueeze(0) | |
| if image_mask_latents.shape[2] !=1: | |
| image_mask_latents = torch.cat([ image_mask_latents[:,:, :1], torch.nn.functional.interpolate(image_mask_latents, size= (source_latents.shape[-3]-1, *source_latents.shape[-2:]), mode="nearest") ], dim=2) | |
| image_mask_latents = torch.where(image_mask_latents>=0.5, 1., 0. )[:1].to(self.device) | |
| # save_video(image_mask_latents.squeeze(0), "mama.mp4", value_range=(0,1) ) | |
| # image_mask_rebuilt = image_mask_latents.repeat_interleave(8, dim=-1).repeat_interleave(8, dim=-2).unsqueeze(0) | |
| # Phantom | |
| if phantom: | |
| lat_input_ref_images_neg = None | |
| if input_ref_images is not None: # Phantom Ref images | |
| lat_input_ref_images = self.get_vae_latents(input_ref_images, self.device) | |
| lat_input_ref_images_neg = torch.zeros_like(lat_input_ref_images) | |
| ref_images_count = trim_frames = lat_input_ref_images.shape[1] | |
| if ti2v: | |
| if input_video is None: | |
| height, width = (height // 32) * 32, (width // 32) * 32 | |
| else: | |
| height, width = input_video.shape[-2:] | |
| source_latents = self.vae.encode([input_video], tile_size = VAE_tile_size)[0].unsqueeze(0) | |
| timestep_injection = True | |
| if extended_input_dim > 0: | |
| extended_latents[:, :, :source_latents.shape[2]] = source_latents | |
| # Lynx | |
| if lynx : | |
| if original_input_ref_images is None or len(original_input_ref_images) == 0: | |
| lynx = False | |
| elif "K" in video_prompt_type and len(input_ref_images) <= 1: | |
| print("Warning: Missing Lynx Ref Image, make sure 'Inject only People / Objets' is selected or if there is 'Landscape and then People or Objects' there are at least two ref images (one Landscape image followed by face).") | |
| lynx = False | |
| else: | |
| from .lynx.resampler import Resampler | |
| from accelerate import init_empty_weights | |
| lynx_lite = model_type in ["lynx_lite", "vace_lynx_lite_14B"] | |
| ip_hidden_states = ip_hidden_states_uncond = None | |
| if True: | |
| with init_empty_weights(): | |
| arc_resampler = Resampler( depth=4, dim=1280, dim_head=64, embedding_dim=512, ff_mult=4, heads=20, num_queries=16, output_dim=2048 if lynx_lite else 5120 ) | |
| offload.load_model_data(arc_resampler, fl.locate_file("wan2.1_lynx_lite_arc_resampler.safetensors" if lynx_lite else "wan2.1_lynx_full_arc_resampler.safetensors")) | |
| arc_resampler.to(self.device) | |
| arcface_embed = face_arc_embeds[None,None,:].to(device=self.device, dtype=torch.float) | |
| ip_hidden_states = arc_resampler(arcface_embed).to(self.dtype) | |
| ip_hidden_states_uncond = arc_resampler(torch.zeros_like(arcface_embed)).to(self.dtype) | |
| arc_resampler = None | |
| if not lynx_lite: | |
| image_ref = original_input_ref_images[-1] | |
| from preprocessing.face_preprocessor import FaceProcessor | |
| face_processor = FaceProcessor() | |
| lynx_ref = face_processor.process(image_ref, resize_to = 256 ) | |
| lynx_ref_buffer, lynx_ref_buffer_uncond = self.encode_reference_images([lynx_ref], tile_size=VAE_tile_size, any_guidance= any_guidance_at_all) | |
| lynx_ref = None | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| vace_lynx = model_type in ["vace_lynx_14B"] | |
| kwargs["lynx_ip_scale"] = control_scale_alt | |
| kwargs["lynx_ref_scale"] = control_scale_alt | |
| #Standin | |
| if standin: | |
| from preprocessing.face_preprocessor import FaceProcessor | |
| standin_ref_pos = 1 if "K" in video_prompt_type else 0 | |
| if len(original_input_ref_images) < standin_ref_pos + 1: | |
| if "I" in video_prompt_type and model_type in ["vace_standin_14B"]: | |
| print("Warning: Missing Standin ref image, make sure 'Inject only People / Objets' is selected or if there is 'Landscape and then People or Objects' there are at least two ref images.") | |
| else: | |
| standin_ref_pos = -1 | |
| image_ref = original_input_ref_images[standin_ref_pos] | |
| face_processor = FaceProcessor() | |
| standin_ref = face_processor.process(image_ref, remove_bg = model_type in ["vace_standin_14B"]) | |
| face_processor = None | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| standin_freqs = get_nd_rotary_pos_embed((-1, int(height/16), int(width/16) ), (-1, int(height/16 + standin_ref.height/16), int(width/16 + standin_ref.width/16) )) | |
| standin_ref = self.vae.encode([ convert_image_to_tensor(standin_ref).unsqueeze(1) ], VAE_tile_size)[0].unsqueeze(0) | |
| kwargs.update({ "standin_freqs": standin_freqs, "standin_ref": standin_ref, }) | |
| # Vace | |
| if vace : | |
| # vace context encode | |
| input_frames = [input_frames.to(self.device)] +([] if input_frames2 is None else [input_frames2.to(self.device)]) | |
| input_masks = [input_masks.to(self.device)] + ([] if input_masks2 is None else [input_masks2.to(self.device)]) | |
| if model_type in ["vace_lynx_14B"] and input_ref_images is not None: | |
| input_ref_images,input_ref_masks = input_ref_images[:-1], input_ref_masks[:-1] | |
| input_ref_images = None if input_ref_images is None else [ u.to(self.device) for u in input_ref_images] | |
| input_ref_masks = None if input_ref_masks is None else [ None if u is None else u.to(self.device) for u in input_ref_masks] | |
| ref_images_before = True | |
| z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents ) | |
| m0 = self.vace_encode_masks(input_masks, input_ref_images) | |
| if input_ref_masks is not None and len(input_ref_masks) > 0 and input_ref_masks[0] is not None: | |
| color_reference_frame = input_ref_images[0].clone() | |
| zbg = self.vace_encode_frames( input_ref_images[:1] * len(input_frames), None, masks=input_ref_masks[0], tile_size = VAE_tile_size ) | |
| mbg = self.vace_encode_masks(input_ref_masks[:1] * len(input_frames), None) | |
| for zz0, mm0, zzbg, mmbg in zip(z0, m0, zbg, mbg): | |
| zz0[:, 0:1] = zzbg | |
| mm0[:, 0:1] = mmbg | |
| zz0 = mm0 = zzbg = mmbg = None | |
| z = [torch.cat([zz, mm], dim=0) for zz, mm in zip(z0, m0)] | |
| ref_images_count = len(input_ref_images) if input_ref_images is not None and input_ref_images is not None else 0 | |
| context_scale = context_scale if context_scale != None else [1.0] * len(z) | |
| kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale, "ref_images_count": ref_images_count }) | |
| if overlapped_latents != None : | |
| overlapped_latents_size = overlapped_latents.shape[2] | |
| extended_overlapped_latents = z[0][:16, :overlapped_latents_size + ref_images_count].clone().unsqueeze(0) | |
| if prefix_frames_count > 0: | |
| color_reference_frame = input_frames[0][:, prefix_frames_count -1:prefix_frames_count].clone() | |
| lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2] | |
| target_shape = (self.vae.model.z_dim, lat_frames + ref_images_count, lat_h, lat_w) | |
| if multitalk: | |
| if audio_proj is None: | |
| audio_proj = [ torch.zeros( (1, 1, 5, 12, 768 ), dtype=self.dtype, device=self.device), torch.zeros( (1, (frame_num - 1) // 4, 8, 12, 768 ), dtype=self.dtype, device=self.device) ] | |
| from .multitalk.multitalk import get_target_masks | |
| audio_proj = [audio.to(self.dtype) for audio in audio_proj] | |
| human_no = len(audio_proj[0]) | |
| token_ref_target_masks = get_target_masks(human_no, lat_h, lat_w, height, width, face_scale = 0.05, bbox = speakers_bboxes).to(self.dtype) if human_no > 1 else None | |
| if fantasy and audio_proj != None: | |
| kwargs.update({ "audio_proj": audio_proj.to(self.dtype), "audio_context_lens": audio_context_lens, }) | |
| if self._interrupt: | |
| return None | |
| expand_shape = [batch_size] + [-1] * len(target_shape) | |
| # Ropes | |
| if extended_input_dim>=2: | |
| shape = list(target_shape[1:]) | |
| shape[extended_input_dim-2] *= 2 | |
| freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) | |
| else: | |
| freqs = get_rotary_pos_embed(target_shape[1:], enable_RIFLEx= enable_RIFLEx) | |
| kwargs["freqs"] = freqs | |
| # Steps Skipping | |
| skip_steps_cache = self.model.cache | |
| if skip_steps_cache != None: | |
| cache_type = skip_steps_cache.cache_type | |
| x_count = 3 if phantom or fantasy or multitalk else 2 | |
| skip_steps_cache.previous_residual = [None] * x_count | |
| if cache_type == "tea": | |
| self.model.compute_teacache_threshold(max(skip_steps_cache.start_step, start_step_no), original_timesteps, skip_steps_cache.multiplier) | |
| else: | |
| self.model.compute_magcache_threshold(max(skip_steps_cache.start_step, start_step_no), original_timesteps, skip_steps_cache.multiplier) | |
| skip_steps_cache.accumulated_err, skip_steps_cache.accumulated_steps, skip_steps_cache.accumulated_ratio = [0.0] * x_count, [0] * x_count, [1.0] * x_count | |
| skip_steps_cache.one_for_all = x_count > 2 | |
| if callback != None: | |
| callback(-1, None, True) | |
| clear_caches() | |
| offload.shared_state["_chipmunk"] = False | |
| chipmunk = offload.shared_state.get("_chipmunk", False) | |
| if chipmunk: | |
| self.model.setup_chipmunk() | |
| offload.shared_state["_radial"] = offload.shared_state["_attention"]=="radial" | |
| radial = offload.shared_state.get("_radial", False) | |
| if radial: | |
| radial_cache = get_cache("radial") | |
| from shared.radial_attention.attention import fill_radial_cache | |
| fill_radial_cache(radial_cache, len(self.model.blocks), *target_shape[1:]) | |
| # init denoising | |
| updated_num_steps= len(timesteps) | |
| denoising_extra = "" | |
| from shared.utils.loras_mutipliers import update_loras_slists, get_model_switch_steps | |
| phase_switch_step, phase_switch_step2, phases_description = get_model_switch_steps(original_timesteps,guide_phases, 0 if self.model2 is None else model_switch_phase, switch_threshold, switch2_threshold ) | |
| if len(phases_description) > 0: set_header_text(phases_description) | |
| guidance_switch_done = guidance_switch2_done = False | |
| if guide_phases > 1: denoising_extra = f"Phase 1/{guide_phases} High Noise" if self.model2 is not None else f"Phase 1/{guide_phases}" | |
| def update_guidance(step_no, t, guide_scale, new_guide_scale, guidance_switch_done, switch_threshold, trans, phase_no, denoising_extra): | |
| if guide_phases >= phase_no and not guidance_switch_done and t <= switch_threshold: | |
| if model_switch_phase == phase_no-1 and self.model2 is not None: trans = self.model2 | |
| guide_scale, guidance_switch_done = new_guide_scale, True | |
| denoising_extra = f"Phase {phase_no}/{guide_phases} {'Low Noise' if trans == self.model2 else 'High Noise'}" if self.model2 is not None else f"Phase {phase_no}/{guide_phases}" | |
| callback(step_no-1, denoising_extra = denoising_extra) | |
| return guide_scale, guidance_switch_done, trans, denoising_extra | |
| update_loras_slists(self.model, loras_slists, len(original_timesteps), phase_switch_step= phase_switch_step, phase_switch_step2= phase_switch_step2) | |
| if self.model2 is not None: update_loras_slists(self.model2, loras_slists, len(original_timesteps), phase_switch_step= phase_switch_step, phase_switch_step2= phase_switch_step2) | |
| callback(-1, None, True, override_num_inference_steps = updated_num_steps, denoising_extra = denoising_extra) | |
| def clear(): | |
| clear_caches() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return None | |
| if sample_scheduler != None: | |
| scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g} | |
| # b, c, lat_f, lat_h, lat_w | |
| latents = torch.randn(batch_size, *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) | |
| if "G" in video_prompt_type: randn = latents | |
| if apg_switch != 0: | |
| apg_momentum = -0.75 | |
| apg_norm_threshold = 55 | |
| text_momentumbuffer = MomentumBuffer(apg_momentum) | |
| audio_momentumbuffer = MomentumBuffer(apg_momentum) | |
| input_frames = input_frames2 = input_masks =input_masks2 = input_video = input_ref_images = input_ref_masks = pre_video_frame = None | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| # denoising | |
| trans = self.model | |
| for i, t in enumerate(tqdm(timesteps)): | |
| guide_scale, guidance_switch_done, trans, denoising_extra = update_guidance(i, t, guide_scale, guide2_scale, guidance_switch_done, switch_threshold, trans, 2, denoising_extra) | |
| guide_scale, guidance_switch2_done, trans, denoising_extra = update_guidance(i, t, guide_scale, guide3_scale, guidance_switch2_done, switch2_threshold, trans, 3, denoising_extra) | |
| offload.set_step_no_for_lora(trans, start_step_no + i) | |
| timestep = torch.stack([t]) | |
| if timestep_injection: | |
| latents[:, :, :source_latents.shape[2]] = source_latents | |
| timestep = torch.full((target_shape[-3],), t, dtype=torch.int64, device=latents.device) | |
| timestep[:source_latents.shape[2]] = 0 | |
| kwargs.update({"t": timestep, "current_step_no": i, "real_step_no": start_step_no + i }) | |
| kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None | |
| if denoising_strength < 1 and i <= injection_denoising_step: | |
| sigma = t / 1000 | |
| if inject_from_start: | |
| noisy_image = latents.clone() | |
| noisy_image[:,:, :source_latents.shape[2] ] = randn[:, :, :source_latents.shape[2] ] * sigma + (1 - sigma) * source_latents | |
| for latent_no, keep_latent in enumerate(latent_keep_frames): | |
| if not keep_latent: | |
| noisy_image[:, :, latent_no:latent_no+1 ] = latents[:, :, latent_no:latent_no+1] | |
| latents = noisy_image | |
| noisy_image = None | |
| else: | |
| latents = randn * sigma + (1 - sigma) * source_latents | |
| if extended_overlapped_latents != None: | |
| if no_noise_latents_injection: | |
| latents[:, :, :extended_overlapped_latents.shape[2]] = extended_overlapped_latents | |
| else: | |
| latent_noise_factor = t / 1000 | |
| latents[:, :, :extended_overlapped_latents.shape[2]] = extended_overlapped_latents * (1.0 - latent_noise_factor) + torch.randn_like(extended_overlapped_latents ) * latent_noise_factor | |
| if vace: | |
| overlap_noise_factor = overlap_noise / 1000 | |
| for zz in z: | |
| zz[0:16, ref_images_count:extended_overlapped_latents.shape[2] ] = extended_overlapped_latents[0, :, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(extended_overlapped_latents[0, :, ref_images_count:] ) * overlap_noise_factor | |
| if extended_input_dim > 0: | |
| latent_model_input = torch.cat([latents, extended_latents.expand(*expand_shape)], dim=extended_input_dim) | |
| else: | |
| latent_model_input = latents | |
| any_guidance = guide_scale != 1 | |
| if phantom: | |
| gen_args = { | |
| "x" : ([ torch.cat([latent_model_input[:,:, :-ref_images_count], lat_input_ref_images.unsqueeze(0).expand(*expand_shape)], dim=2) ] * 2 + | |
| [ torch.cat([latent_model_input[:,:, :-ref_images_count], lat_input_ref_images_neg.unsqueeze(0).expand(*expand_shape)], dim=2)]), | |
| "context": [context, context_null, context_null] , | |
| } | |
| elif fantasy: | |
| gen_args = { | |
| "x" : [latent_model_input, latent_model_input, latent_model_input], | |
| "context" : [context, context_null, context_null], | |
| "audio_scale": [audio_scale, None, None ] | |
| } | |
| elif animate: | |
| gen_args = { | |
| "x" : [latent_model_input, latent_model_input], | |
| "context" : [context, context_null], | |
| # "face_pixel_values": [face_pixel_values, None] | |
| "face_pixel_values": [face_pixel_values, face_pixel_values] # seems to look better this way | |
| } | |
| elif lynx: | |
| gen_args = { | |
| "x" : [latent_model_input, latent_model_input], | |
| "context" : [context, context_null], | |
| "lynx_ip_embeds": [ip_hidden_states, ip_hidden_states_uncond] | |
| } | |
| if model_type in ["lynx", "vace_lynx_14B"]: | |
| gen_args["lynx_ref_buffer"] = [lynx_ref_buffer, lynx_ref_buffer_uncond] | |
| elif multitalk and audio_proj != None: | |
| if guide_scale == 1: | |
| gen_args = { | |
| "x" : [latent_model_input, latent_model_input], | |
| "context" : [context, context], | |
| "multitalk_audio": [audio_proj, [torch.zeros_like(audio_proj[0][-1:]), torch.zeros_like(audio_proj[1][-1:])]], | |
| "multitalk_masks": [token_ref_target_masks, None] | |
| } | |
| any_guidance = audio_cfg_scale != 1 | |
| else: | |
| gen_args = { | |
| "x" : [latent_model_input, latent_model_input, latent_model_input], | |
| "context" : [context, context_null, context_null], | |
| "multitalk_audio": [audio_proj, audio_proj, [torch.zeros_like(audio_proj[0][-1:]), torch.zeros_like(audio_proj[1][-1:])]], | |
| "multitalk_masks": [token_ref_target_masks, token_ref_target_masks, None] | |
| } | |
| else: | |
| gen_args = { | |
| "x" : [latent_model_input, latent_model_input], | |
| "context": [context, context_null] | |
| } | |
| if joint_pass and any_guidance: | |
| ret_values = trans( **gen_args , **kwargs) | |
| if self._interrupt: | |
| return clear() | |
| else: | |
| size = len(gen_args["x"]) if any_guidance else 1 | |
| ret_values = [None] * size | |
| for x_id in range(size): | |
| sub_gen_args = {k : [v[x_id]] for k, v in gen_args.items() } | |
| ret_values[x_id] = trans( **sub_gen_args, x_id= x_id , **kwargs)[0] | |
| if self._interrupt: | |
| return clear() | |
| sub_gen_args = None | |
| if not any_guidance: | |
| noise_pred = ret_values[0] | |
| elif phantom: | |
| guide_scale_img= 5.0 | |
| guide_scale_text= guide_scale #7.5 | |
| pos_it, pos_i, neg = ret_values | |
| noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i) | |
| pos_it = pos_i = neg = None | |
| elif fantasy: | |
| noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = ret_values | |
| noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond - noise_pred_noaudio) | |
| noise_pred_noaudio = None | |
| elif multitalk and audio_proj != None: | |
| if apg_switch != 0: | |
| if guide_scale == 1: | |
| noise_pred_cond, noise_pred_drop_audio = ret_values | |
| noise_pred = noise_pred_cond + (audio_cfg_scale - 1)* adaptive_projected_guidance(noise_pred_cond - noise_pred_drop_audio, | |
| noise_pred_cond, | |
| momentum_buffer=audio_momentumbuffer, | |
| norm_threshold=apg_norm_threshold) | |
| else: | |
| noise_pred_cond, noise_pred_drop_text, noise_pred_uncond = ret_values | |
| noise_pred = noise_pred_cond + (guide_scale - 1) * adaptive_projected_guidance(noise_pred_cond - noise_pred_drop_text, | |
| noise_pred_cond, | |
| momentum_buffer=text_momentumbuffer, | |
| norm_threshold=apg_norm_threshold) \ | |
| + (audio_cfg_scale - 1) * adaptive_projected_guidance(noise_pred_drop_text - noise_pred_uncond, | |
| noise_pred_cond, | |
| momentum_buffer=audio_momentumbuffer, | |
| norm_threshold=apg_norm_threshold) | |
| else: | |
| if guide_scale == 1: | |
| noise_pred_cond, noise_pred_drop_audio = ret_values | |
| noise_pred = noise_pred_drop_audio + audio_cfg_scale* (noise_pred_cond - noise_pred_drop_audio) | |
| else: | |
| noise_pred_cond, noise_pred_drop_text, noise_pred_uncond = ret_values | |
| noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_drop_text) + audio_cfg_scale * (noise_pred_drop_text - noise_pred_uncond) | |
| noise_pred_uncond = noise_pred_cond = noise_pred_drop_text = noise_pred_drop_audio = None | |
| else: | |
| noise_pred_cond, noise_pred_uncond = ret_values | |
| if apg_switch != 0: | |
| noise_pred = noise_pred_cond + (guide_scale - 1) * adaptive_projected_guidance(noise_pred_cond - noise_pred_uncond, | |
| noise_pred_cond, | |
| momentum_buffer=text_momentumbuffer, | |
| norm_threshold=apg_norm_threshold) | |
| else: | |
| noise_pred_text = noise_pred_cond | |
| if cfg_star_switch: | |
| # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/ | |
| positive_flat = noise_pred_text.view(batch_size, -1) | |
| negative_flat = noise_pred_uncond.view(batch_size, -1) | |
| alpha = optimized_scale(positive_flat,negative_flat) | |
| alpha = alpha.view(batch_size, 1, 1, 1) | |
| if (i <= cfg_zero_step): | |
| noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred... | |
| else: | |
| noise_pred_uncond *= alpha | |
| noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond) | |
| ret_values = noise_pred_uncond = noise_pred_cond = noise_pred_text = neg = None | |
| if sample_solver == "euler": | |
| dt = timesteps[i] if i == len(timesteps)-1 else (timesteps[i] - timesteps[i + 1]) | |
| dt = dt.item() / self.num_timesteps | |
| latents = latents - noise_pred * dt | |
| else: | |
| latents = sample_scheduler.step( | |
| noise_pred[:, :, :target_shape[1]], | |
| t, | |
| latents, | |
| **scheduler_kwargs)[0] | |
| if image_mask_latents is not None: | |
| sigma = 0 if i == len(timesteps)-1 else timesteps[i+1]/1000 | |
| noisy_image = randn * sigma + (1 - sigma) * source_latents | |
| latents = noisy_image * (1-image_mask_latents) + image_mask_latents * latents | |
| if callback is not None: | |
| latents_preview = latents | |
| if ref_images_before and ref_images_count > 0: latents_preview = latents_preview[:, :, ref_images_count: ] | |
| if trim_frames > 0: latents_preview= latents_preview[:, :,:-trim_frames] | |
| if image_outputs: latents_preview= latents_preview[:, :,:1] | |
| if len(latents_preview) > 1: latents_preview = latents_preview.transpose(0,2) | |
| callback(i, latents_preview[0], False, denoising_extra =denoising_extra ) | |
| latents_preview = None | |
| clear() | |
| if timestep_injection: | |
| latents[:, :, :source_latents.shape[2]] = source_latents | |
| if ref_images_before and ref_images_count > 0: latents = latents[:, :, ref_images_count:] | |
| if trim_frames > 0: latents= latents[:, :,:-trim_frames] | |
| if return_latent_slice != None: | |
| latent_slice = latents[:, :, return_latent_slice].clone() | |
| x0 =latents.unbind(dim=0) | |
| if chipmunk: | |
| self.model.release_chipmunk() # need to add it at every exit when in prod | |
| videos = self.vae.decode(x0, VAE_tile_size) | |
| if image_outputs: | |
| videos = torch.cat([video[:,:1] for video in videos], dim=1) if len(videos) > 1 else videos[0][:,:1] | |
| else: | |
| videos = videos[0] # return only first video | |
| if color_correction_strength > 0 and (prefix_frames_count > 0 and window_no > 1 or prefix_frames_count > 1 and window_no == 1): | |
| if vace and False: | |
| # videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), input_frames[0].unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "progressive_blend").squeeze(0) | |
| videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), input_frames[0].unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "reference").squeeze(0) | |
| # videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), videos.unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "reference").squeeze(0) | |
| elif color_reference_frame is not None: | |
| videos = match_and_blend_colors(videos.unsqueeze(0), color_reference_frame.unsqueeze(0), color_correction_strength).squeeze(0) | |
| if return_latent_slice != None: | |
| return { "x" : videos, "latent_slice" : latent_slice } | |
| return videos | |
| def adapt_vace_model(self, model): | |
| modules_dict= { k: m for k, m in model.named_modules()} | |
| for model_layer, vace_layer in model.vace_layers_mapping.items(): | |
| module = modules_dict[f"vace_blocks.{vace_layer}"] | |
| target = modules_dict[f"blocks.{model_layer}"] | |
| setattr(target, "vace", module ) | |
| delattr(model, "vace_blocks") | |
| def adapt_animate_model(self, model): | |
| modules_dict= { k: m for k, m in model.named_modules()} | |
| for animate_layer in range(8): | |
| module = modules_dict[f"face_adapter.fuser_blocks.{animate_layer}"] | |
| model_layer = animate_layer * 5 | |
| target = modules_dict[f"blocks.{model_layer}"] | |
| setattr(target, "face_adapter_fuser_blocks", module ) | |
| delattr(model, "face_adapter") | |
| def get_loras_transformer(self, get_model_recursive_prop, base_model_type, model_type, video_prompt_type, model_mode, **kwargs): | |
| if base_model_type == "animate": | |
| if "#" in video_prompt_type and "1" in video_prompt_type: | |
| preloadURLs = get_model_recursive_prop(model_type, "preload_URLs") | |
| if len(preloadURLs) > 0: | |
| return [fl.locate_file(os.path.basename(preloadURLs[0]))] , [1] | |
| return [], [] | |