Spaces:
Running
Running
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from einops import rearrange | |
| from diffusers.utils import is_torch_version, logging | |
| from diffusers.models.activations import get_activation | |
| from diffusers.models.attention_processor import SpatialNorm | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.normalization import AdaGroupNorm | |
| from diffusers.models.normalization import RMSNorm | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None): | |
| seq_len = n_frame * n_hw | |
| mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) | |
| for i in range(seq_len): | |
| i_frame = i // n_hw | |
| mask[i, : (i_frame + 1) * n_hw] = 0 | |
| if batch_size is not None: | |
| mask = mask.unsqueeze(0).expand(batch_size, -1, -1) | |
| return mask | |
| class CausalConv3d(nn.Module): | |
| def __init__( | |
| self, | |
| chan_in, | |
| chan_out, | |
| kernel_size: Union[int, Tuple[int, int, int]], | |
| stride: Union[int, Tuple[int, int, int]] = 1, | |
| dilation: Union[int, Tuple[int, int, int]] = 1, | |
| pad_mode = 'replicate', | |
| disable_causal=False, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.pad_mode = pad_mode | |
| if disable_causal: | |
| padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2) | |
| else: | |
| padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0) # W, H, T | |
| self.time_causal_padding = padding | |
| self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride = stride, dilation = dilation, **kwargs) | |
| def forward(self, x): | |
| x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) | |
| return self.conv(x) | |
| class CausalAvgPool3d(nn.Module): | |
| def __init__( | |
| self, | |
| kernel_size: Union[int, Tuple[int, int, int]], | |
| stride: Union[int, Tuple[int, int, int]], | |
| pad_mode = 'replicate', | |
| disable_causal=False, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.pad_mode = pad_mode | |
| if disable_causal: | |
| padding = (0, 0, 0, 0, 0, 0) | |
| else: | |
| padding = (0, 0, 0, 0, stride - 1, 0) # W, H, T | |
| self.time_causal_padding = padding | |
| self.conv = nn.AvgPool3d(kernel_size, stride=stride, ceil_mode=True, **kwargs) | |
| self.pad_mode = pad_mode | |
| def forward(self, x): | |
| x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) | |
| return self.conv(x) | |
| class UpsampleCausal3D(nn.Module): | |
| """A 3D upsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| use_conv_transpose (`bool`, default `False`): | |
| option to use a convolution transpose. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| name (`str`, default `conv`): | |
| name of the upsampling 3D layer. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| use_conv: bool = False, | |
| use_conv_transpose: bool = False, | |
| out_channels: Optional[int] = None, | |
| name: str = "conv", | |
| kernel_size: Optional[int] = None, | |
| padding=1, | |
| norm_type=None, | |
| eps=None, | |
| elementwise_affine=None, | |
| bias=True, | |
| interpolate=True, | |
| upsample_factor=(2, 2, 2), | |
| disable_causal=False, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_conv_transpose = use_conv_transpose | |
| self.name = name | |
| self.interpolate = interpolate | |
| self.upsample_factor = upsample_factor | |
| self.disable_causal = disable_causal | |
| if norm_type == "ln_norm": | |
| self.norm = nn.LayerNorm(channels, eps, elementwise_affine) | |
| elif norm_type == "rms_norm": | |
| self.norm = RMSNorm(channels, eps, elementwise_affine) | |
| elif norm_type is None: | |
| self.norm = None | |
| else: | |
| raise ValueError(f"unknown norm_type: {norm_type}") | |
| conv = None | |
| if use_conv_transpose: | |
| assert False, "Not Implement yet" | |
| if kernel_size is None: | |
| kernel_size = 4 | |
| conv = nn.ConvTranspose2d( | |
| channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias | |
| ) | |
| elif use_conv: | |
| if kernel_size is None: | |
| kernel_size = 3 | |
| conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias, disable_causal=disable_causal) | |
| if name == "conv": | |
| self.conv = conv | |
| else: | |
| self.Conv2d_0 = conv | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| output_size: Optional[int] = None, | |
| scale: float = 1.0, | |
| ) -> torch.FloatTensor: | |
| assert hidden_states.shape[1] == self.channels | |
| if self.norm is not None: | |
| assert False, "Not Implement yet" | |
| hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| if self.use_conv_transpose: | |
| return self.conv(hidden_states) | |
| # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
| # https://github.com/pytorch/pytorch/issues/86679 | |
| dtype = hidden_states.dtype | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(torch.float32) | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| hidden_states = hidden_states.contiguous() | |
| # if `output_size` is passed we force the interpolation output | |
| # size and do not make use of `scale_factor=2` | |
| if self.interpolate: | |
| B, C, T, H, W = hidden_states.shape | |
| if not self.disable_causal: | |
| first_h, other_h = hidden_states.split((1, T-1), dim=2) | |
| if output_size is None: | |
| if T > 1: | |
| other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest") | |
| first_h = first_h.squeeze(2) | |
| first_h = F.interpolate(first_h, scale_factor=self.upsample_factor[1:], mode="nearest") | |
| first_h = first_h.unsqueeze(2) | |
| else: | |
| assert False, "Not Implement yet" | |
| other_h = F.interpolate(other_h, size=output_size, mode="nearest") | |
| if T > 1: | |
| hidden_states = torch.cat((first_h, other_h), dim=2) | |
| else: | |
| hidden_states = first_h | |
| else: | |
| hidden_states = F.interpolate(hidden_states, scale_factor=self.upsample_factor, mode="nearest") | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(dtype) | |
| if self.use_conv: | |
| if self.name == "conv": | |
| hidden_states = self.conv(hidden_states) | |
| else: | |
| hidden_states = self.Conv2d_0(hidden_states) | |
| return hidden_states | |
| class DownsampleCausal3D(nn.Module): | |
| """A 3D downsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| padding (`int`, default `1`): | |
| padding for the convolution. | |
| name (`str`, default `conv`): | |
| name of the downsampling 3D layer. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| use_conv: bool = False, | |
| out_channels: Optional[int] = None, | |
| padding: int = 1, | |
| name: str = "conv", | |
| kernel_size=3, | |
| norm_type=None, | |
| eps=None, | |
| elementwise_affine=None, | |
| bias=True, | |
| stride=2, | |
| disable_causal=False, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.padding = padding | |
| stride = stride | |
| self.name = name | |
| if norm_type == "ln_norm": | |
| self.norm = nn.LayerNorm(channels, eps, elementwise_affine) | |
| elif norm_type == "rms_norm": | |
| self.norm = RMSNorm(channels, eps, elementwise_affine) | |
| elif norm_type is None: | |
| self.norm = None | |
| else: | |
| raise ValueError(f"unknown norm_type: {norm_type}") | |
| if use_conv: | |
| conv = CausalConv3d( | |
| self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, disable_causal=disable_causal, bias=bias | |
| ) | |
| else: | |
| raise NotImplementedError | |
| if name == "conv": | |
| self.Conv2d_0 = conv | |
| self.conv = conv | |
| elif name == "Conv2d_0": | |
| self.conv = conv | |
| else: | |
| self.conv = conv | |
| def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | |
| assert hidden_states.shape[1] == self.channels | |
| if self.norm is not None: | |
| hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| assert hidden_states.shape[1] == self.channels | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class ResnetBlockCausal3D(nn.Module): | |
| r""" | |
| A Resnet block. | |
| Parameters: | |
| in_channels (`int`): The number of channels in the input. | |
| out_channels (`int`, *optional*, default to be `None`): | |
| The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
| dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
| temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
| groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
| groups_out (`int`, *optional*, default to None): | |
| The number of groups to use for the second normalization layer. if set to None, same as `groups`. | |
| eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
| non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. | |
| time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. | |
| By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or | |
| "ada_group" for a stronger conditioning with scale and shift. | |
| kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see | |
| [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. | |
| output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. | |
| use_in_shortcut (`bool`, *optional*, default to `True`): | |
| If `True`, add a 1x1 nn.conv2d layer for skip-connection. | |
| up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. | |
| down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. | |
| conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the | |
| `conv_shortcut` output. | |
| conv_3d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. | |
| If None, same as `out_channels`. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| conv_shortcut: bool = False, | |
| dropout: float = 0.0, | |
| temb_channels: int = 512, | |
| groups: int = 32, | |
| groups_out: Optional[int] = None, | |
| pre_norm: bool = True, | |
| eps: float = 1e-6, | |
| non_linearity: str = "swish", | |
| skip_time_act: bool = False, | |
| time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial | |
| kernel: Optional[torch.FloatTensor] = None, | |
| output_scale_factor: float = 1.0, | |
| use_in_shortcut: Optional[bool] = None, | |
| up: bool = False, | |
| down: bool = False, | |
| conv_shortcut_bias: bool = True, | |
| conv_3d_out_channels: Optional[int] = None, | |
| disable_causal: bool = False, | |
| ): | |
| super().__init__() | |
| self.pre_norm = pre_norm | |
| self.pre_norm = True | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.up = up | |
| self.down = down | |
| self.output_scale_factor = output_scale_factor | |
| self.time_embedding_norm = time_embedding_norm | |
| self.skip_time_act = skip_time_act | |
| linear_cls = nn.Linear | |
| if groups_out is None: | |
| groups_out = groups | |
| if self.time_embedding_norm == "ada_group": | |
| self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) | |
| elif self.time_embedding_norm == "spatial": | |
| self.norm1 = SpatialNorm(in_channels, temb_channels) | |
| else: | |
| self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
| self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1, disable_causal=disable_causal) | |
| if temb_channels is not None: | |
| if self.time_embedding_norm == "default": | |
| self.time_emb_proj = linear_cls(temb_channels, out_channels) | |
| elif self.time_embedding_norm == "scale_shift": | |
| self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) | |
| elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
| self.time_emb_proj = None | |
| else: | |
| raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
| else: | |
| self.time_emb_proj = None | |
| if self.time_embedding_norm == "ada_group": | |
| self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) | |
| elif self.time_embedding_norm == "spatial": | |
| self.norm2 = SpatialNorm(out_channels, temb_channels) | |
| else: | |
| self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| conv_3d_out_channels = conv_3d_out_channels or out_channels | |
| self.conv2 = CausalConv3d(out_channels, conv_3d_out_channels, kernel_size=3, stride=1, disable_causal=disable_causal) | |
| self.nonlinearity = get_activation(non_linearity) | |
| self.upsample = self.downsample = None | |
| if self.up: | |
| self.upsample = UpsampleCausal3D(in_channels, use_conv=False, disable_causal=disable_causal) | |
| elif self.down: | |
| self.downsample = DownsampleCausal3D(in_channels, use_conv=False, disable_causal=disable_causal, name="op") | |
| self.use_in_shortcut = self.in_channels != conv_3d_out_channels if use_in_shortcut is None else use_in_shortcut | |
| self.conv_shortcut = None | |
| if self.use_in_shortcut: | |
| self.conv_shortcut = CausalConv3d( | |
| in_channels, | |
| conv_3d_out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| disable_causal=disable_causal, | |
| bias=conv_shortcut_bias, | |
| ) | |
| def forward( | |
| self, | |
| input_tensor: torch.FloatTensor, | |
| temb: torch.FloatTensor, | |
| scale: float = 1.0, | |
| ) -> torch.FloatTensor: | |
| hidden_states = input_tensor | |
| if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
| hidden_states = self.norm1(hidden_states, temb) | |
| else: | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| if self.upsample is not None: | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| input_tensor = input_tensor.contiguous() | |
| hidden_states = hidden_states.contiguous() | |
| input_tensor = ( | |
| self.upsample(input_tensor, scale=scale) | |
| ) | |
| hidden_states = ( | |
| self.upsample(hidden_states, scale=scale) | |
| ) | |
| elif self.downsample is not None: | |
| input_tensor = ( | |
| self.downsample(input_tensor, scale=scale) | |
| ) | |
| hidden_states = ( | |
| self.downsample(hidden_states, scale=scale) | |
| ) | |
| hidden_states = self.conv1(hidden_states) | |
| if self.time_emb_proj is not None: | |
| if not self.skip_time_act: | |
| temb = self.nonlinearity(temb) | |
| temb = ( | |
| self.time_emb_proj(temb, scale)[:, :, None, None] | |
| ) | |
| if temb is not None and self.time_embedding_norm == "default": | |
| hidden_states = hidden_states + temb | |
| if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
| hidden_states = self.norm2(hidden_states, temb) | |
| else: | |
| hidden_states = self.norm2(hidden_states) | |
| if temb is not None and self.time_embedding_norm == "scale_shift": | |
| scale, shift = torch.chunk(temb, 2, dim=1) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| input_tensor = ( | |
| self.conv_shortcut(input_tensor) | |
| ) | |
| output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
| return output_tensor | |
| def get_down_block3d( | |
| down_block_type: str, | |
| num_layers: int, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| add_downsample: bool, | |
| downsample_stride: int, | |
| resnet_eps: float, | |
| resnet_act_fn: str, | |
| transformer_layers_per_block: int = 1, | |
| num_attention_heads: Optional[int] = None, | |
| resnet_groups: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| downsample_padding: Optional[int] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| attention_type: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| resnet_out_scale_factor: float = 1.0, | |
| cross_attention_norm: Optional[str] = None, | |
| attention_head_dim: Optional[int] = None, | |
| downsample_type: Optional[str] = None, | |
| dropout: float = 0.0, | |
| disable_causal: bool = False, | |
| ): | |
| # If attn head dim is not defined, we default it to the number of heads | |
| if attention_head_dim is None: | |
| logger.warn( | |
| f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
| ) | |
| attention_head_dim = num_attention_heads | |
| down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
| if down_block_type == "DownEncoderBlockCausal3D": | |
| return DownEncoderBlockCausal3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| dropout=dropout, | |
| add_downsample=add_downsample, | |
| downsample_stride=downsample_stride, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| disable_causal=disable_causal, | |
| ) | |
| raise ValueError(f"{down_block_type} does not exist.") | |
| def get_up_block3d( | |
| up_block_type: str, | |
| num_layers: int, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| add_upsample: bool, | |
| upsample_scale_factor: Tuple, | |
| resnet_eps: float, | |
| resnet_act_fn: str, | |
| resolution_idx: Optional[int] = None, | |
| transformer_layers_per_block: int = 1, | |
| num_attention_heads: Optional[int] = None, | |
| resnet_groups: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| attention_type: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| resnet_out_scale_factor: float = 1.0, | |
| cross_attention_norm: Optional[str] = None, | |
| attention_head_dim: Optional[int] = None, | |
| upsample_type: Optional[str] = None, | |
| dropout: float = 0.0, | |
| disable_causal: bool = False, | |
| ) -> nn.Module: | |
| # If attn head dim is not defined, we default it to the number of heads | |
| if attention_head_dim is None: | |
| logger.warn( | |
| f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
| ) | |
| attention_head_dim = num_attention_heads | |
| up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
| if up_block_type == "UpDecoderBlockCausal3D": | |
| return UpDecoderBlockCausal3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| resolution_idx=resolution_idx, | |
| dropout=dropout, | |
| add_upsample=add_upsample, | |
| upsample_scale_factor=upsample_scale_factor, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| temb_channels=temb_channels, | |
| disable_causal=disable_causal, | |
| ) | |
| raise ValueError(f"{up_block_type} does not exist.") | |
| class UNetMidBlockCausal3D(nn.Module): | |
| """ | |
| A 3D UNet mid-block [`UNetMidBlockCausal3D`] with multiple residual blocks and optional attention blocks. | |
| Args: | |
| in_channels (`int`): The number of input channels. | |
| temb_channels (`int`): The number of temporal embedding channels. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
| num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
| resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
| resnet_time_scale_shift (`str`, *optional*, defaults to `default`): | |
| The type of normalization to apply to the time embeddings. This can help to improve the performance of the | |
| model on tasks with long-range temporal dependencies. | |
| resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | |
| resnet_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use in the group normalization layers of the resnet blocks. | |
| attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. | |
| resnet_pre_norm (`bool`, *optional*, defaults to `True`): | |
| Whether to use pre-normalization for the resnet blocks. | |
| add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | |
| attention_head_dim (`int`, *optional*, defaults to 1): | |
| Dimension of a single attention head. The number of attention heads is determined based on this value and | |
| the number of input channels. | |
| output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | |
| Returns: | |
| `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
| in_channels, height, width)`. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", # default, spatial | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| attn_groups: Optional[int] = None, | |
| resnet_pre_norm: bool = True, | |
| add_attention: bool = True, | |
| attention_head_dim: int = 1, | |
| output_scale_factor: float = 1.0, | |
| disable_causal: bool = False, | |
| causal_attention: bool = False, | |
| ): | |
| super().__init__() | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| self.add_attention = add_attention | |
| self.causal_attention = causal_attention | |
| if attn_groups is None: | |
| attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None | |
| # there is always at least one resnet | |
| resnets = [ | |
| ResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| disable_causal=disable_causal, | |
| ) | |
| ] | |
| attentions = [] | |
| if attention_head_dim is None: | |
| logger.warn( | |
| f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." | |
| ) | |
| attention_head_dim = in_channels | |
| for _ in range(num_layers): | |
| if self.add_attention: | |
| #assert False, "Not implemented yet" | |
| attentions.append( | |
| Attention( | |
| in_channels, | |
| heads=in_channels // attention_head_dim, | |
| dim_head=attention_head_dim, | |
| rescale_output_factor=output_scale_factor, | |
| eps=resnet_eps, | |
| norm_num_groups=attn_groups, | |
| spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | |
| residual_connection=True, | |
| bias=True, | |
| upcast_softmax=True, | |
| _from_deprecated_attn_block=True, | |
| ) | |
| ) | |
| else: | |
| attentions.append(None) | |
| resnets.append( | |
| ResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| disable_causal=disable_causal, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| if attn is not None: | |
| B, C, T, H, W = hidden_states.shape | |
| hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") | |
| if self.causal_attention: | |
| attention_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B) | |
| else: | |
| attention_mask = None | |
| hidden_states = attn(hidden_states, temb=temb, attention_mask=attention_mask) | |
| hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W) | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| class DownEncoderBlockCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor: float = 1.0, | |
| add_downsample: bool = True, | |
| downsample_stride: int = 2, | |
| downsample_padding: int = 1, | |
| disable_causal: bool = False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=None, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| disable_causal=disable_causal, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| DownsampleCausal3D( | |
| out_channels, | |
| use_conv=True, | |
| out_channels=out_channels, | |
| padding=downsample_padding, | |
| name="op", | |
| stride=downsample_stride, | |
| disable_causal=disable_causal, | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | |
| for resnet in self.resnets: | |
| hidden_states = resnet(hidden_states, temb=None, scale=scale) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states, scale) | |
| return hidden_states | |
| class UpDecoderBlockCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| resolution_idx: Optional[int] = None, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", # default, spatial | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor: float = 1.0, | |
| add_upsample: bool = True, | |
| upsample_scale_factor = (2, 2, 2), | |
| temb_channels: Optional[int] = None, | |
| disable_causal: bool = False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| input_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlockCausal3D( | |
| in_channels=input_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| disable_causal=disable_causal, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList( | |
| [ | |
| UpsampleCausal3D( | |
| out_channels, | |
| use_conv=True, | |
| out_channels=out_channels, | |
| upsample_factor=upsample_scale_factor, | |
| disable_causal=disable_causal | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.upsamplers = None | |
| self.resolution_idx = resolution_idx | |
| def forward( | |
| self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | |
| ) -> torch.FloatTensor: | |
| for resnet in self.resnets: | |
| hidden_states = resnet(hidden_states, temb=temb, scale=scale) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states | |