Spaces:
Configuration error
Configuration error
| from typing import Any, List, Tuple, Optional, Union, Dict | |
| from einops import rearrange | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.models import ModelMixin | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from .activation_layers import get_activation_layer | |
| from .norm_layers import get_norm_layer | |
| from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection | |
| from .attenion import attention, parallel_attention, get_cu_seqlens | |
| from .posemb_layers import apply_rotary_emb | |
| from .mlp_layers import MLP, MLPEmbedder, FinalLayer | |
| from .modulate_layers import ModulateDiT, modulate, modulate_ , apply_gate, apply_gate_and_accumulate_ | |
| from .token_refiner import SingleTokenRefiner | |
| import numpy as np | |
| from mmgp import offload | |
| from shared.attention import pay_attention | |
| from .audio_adapters import AudioProjNet2, PerceiverAttentionCA | |
| def get_linear_split_map(): | |
| hidden_size = 3072 | |
| split_linear_modules_map = { | |
| "img_attn_qkv" : {"mapped_modules" : ["img_attn_q", "img_attn_k", "img_attn_v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]}, | |
| "linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]} | |
| } | |
| return split_linear_modules_map | |
| class MMDoubleStreamBlock(nn.Module): | |
| """ | |
| A multimodal dit block with seperate modulation for | |
| text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206 | |
| (Flux.1): https://github.com/black-forest-labs/flux | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| heads_num: int, | |
| mlp_width_ratio: float, | |
| mlp_act_type: str = "gelu_tanh", | |
| qk_norm: bool = True, | |
| qk_norm_type: str = "rms", | |
| qkv_bias: bool = False, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| attention_mode: str = "sdpa", | |
| ): | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| self.attention_mode = attention_mode | |
| self.deterministic = False | |
| self.heads_num = heads_num | |
| head_dim = hidden_size // heads_num | |
| mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
| self.img_mod = ModulateDiT( | |
| hidden_size, | |
| factor=6, | |
| act_layer=get_activation_layer("silu"), | |
| **factory_kwargs, | |
| ) | |
| self.img_norm1 = nn.LayerNorm( | |
| hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
| ) | |
| self.img_attn_qkv = nn.Linear( | |
| hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
| ) | |
| qk_norm_layer = get_norm_layer(qk_norm_type) | |
| self.img_attn_q_norm = ( | |
| qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
| if qk_norm | |
| else nn.Identity() | |
| ) | |
| self.img_attn_k_norm = ( | |
| qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
| if qk_norm | |
| else nn.Identity() | |
| ) | |
| self.img_attn_proj = nn.Linear( | |
| hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
| ) | |
| self.img_norm2 = nn.LayerNorm( | |
| hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
| ) | |
| self.img_mlp = MLP( | |
| hidden_size, | |
| mlp_hidden_dim, | |
| act_layer=get_activation_layer(mlp_act_type), | |
| bias=True, | |
| **factory_kwargs, | |
| ) | |
| self.txt_mod = ModulateDiT( | |
| hidden_size, | |
| factor=6, | |
| act_layer=get_activation_layer("silu"), | |
| **factory_kwargs, | |
| ) | |
| self.txt_norm1 = nn.LayerNorm( | |
| hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
| ) | |
| self.txt_attn_qkv = nn.Linear( | |
| hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
| ) | |
| self.txt_attn_q_norm = ( | |
| qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
| if qk_norm | |
| else nn.Identity() | |
| ) | |
| self.txt_attn_k_norm = ( | |
| qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
| if qk_norm | |
| else nn.Identity() | |
| ) | |
| self.txt_attn_proj = nn.Linear( | |
| hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
| ) | |
| self.txt_norm2 = nn.LayerNorm( | |
| hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
| ) | |
| self.txt_mlp = MLP( | |
| hidden_size, | |
| mlp_hidden_dim, | |
| act_layer=get_activation_layer(mlp_act_type), | |
| bias=True, | |
| **factory_kwargs, | |
| ) | |
| self.hybrid_seq_parallel_attn = None | |
| def enable_deterministic(self): | |
| self.deterministic = True | |
| def disable_deterministic(self): | |
| self.deterministic = False | |
| def forward( | |
| self, | |
| img: torch.Tensor, | |
| txt: torch.Tensor, | |
| vec: torch.Tensor, | |
| attn_mask = None, | |
| seqlens_q: Optional[torch.Tensor] = None, | |
| seqlens_kv: Optional[torch.Tensor] = None, | |
| freqs_cis: tuple = None, | |
| condition_type: str = None, | |
| token_replace_vec: torch.Tensor = None, | |
| frist_frame_token_num: int = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| if condition_type == "token_replace": | |
| img_mod1, token_replace_img_mod1 = self.img_mod(vec, condition_type=condition_type, \ | |
| token_replace_vec=token_replace_vec) | |
| (img_mod1_shift, | |
| img_mod1_scale, | |
| img_mod1_gate, | |
| img_mod2_shift, | |
| img_mod2_scale, | |
| img_mod2_gate) = img_mod1.chunk(6, dim=-1) | |
| (tr_img_mod1_shift, | |
| tr_img_mod1_scale, | |
| tr_img_mod1_gate, | |
| tr_img_mod2_shift, | |
| tr_img_mod2_scale, | |
| tr_img_mod2_gate) = token_replace_img_mod1.chunk(6, dim=-1) | |
| else: | |
| ( | |
| img_mod1_shift, | |
| img_mod1_scale, | |
| img_mod1_gate, | |
| img_mod2_shift, | |
| img_mod2_scale, | |
| img_mod2_gate, | |
| ) = self.img_mod(vec).chunk(6, dim=-1) | |
| ( | |
| txt_mod1_shift, | |
| txt_mod1_scale, | |
| txt_mod1_gate, | |
| txt_mod2_shift, | |
| txt_mod2_scale, | |
| txt_mod2_gate, | |
| ) = self.txt_mod(vec).chunk(6, dim=-1) | |
| ##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep ! | |
| # I am sure you are a nice person and as you copy this code, you will give me officially proper credits: | |
| # Please link to https://github.com/deepbeepmeep/HunyuanVideoGP and @deepbeepmeep on twitter | |
| # Prepare image for attention. | |
| img_modulated = self.img_norm1(img) | |
| img_modulated = img_modulated.to(torch.bfloat16) | |
| if condition_type == "token_replace": | |
| modulate_(img_modulated[:, :frist_frame_token_num], shift=tr_img_mod1_shift, scale=tr_img_mod1_scale) | |
| modulate_(img_modulated[:, frist_frame_token_num:], shift=img_mod1_shift, scale=img_mod1_scale) | |
| else: | |
| modulate_( img_modulated, shift=img_mod1_shift, scale=img_mod1_scale ) | |
| shape = (*img_modulated.shape[:2], self.heads_num, int(img_modulated.shape[-1] / self.heads_num) ) | |
| img_q = self.img_attn_q(img_modulated).view(*shape) | |
| img_k = self.img_attn_k(img_modulated).view(*shape) | |
| img_v = self.img_attn_v(img_modulated).view(*shape) | |
| del img_modulated | |
| # Apply QK-Norm if needed | |
| self.img_attn_q_norm.apply_(img_q).to(img_v) | |
| img_q_len = img_q.shape[1] | |
| self.img_attn_k_norm.apply_(img_k).to(img_v) | |
| img_kv_len= img_k.shape[1] | |
| batch_size = img_k.shape[0] | |
| # Apply RoPE if needed. | |
| qklist = [img_q, img_k] | |
| del img_q, img_k | |
| img_q, img_k = apply_rotary_emb(qklist, freqs_cis, head_first=False) | |
| # Prepare txt for attention. | |
| txt_modulated = self.txt_norm1(txt) | |
| modulate_(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale ) | |
| txt_qkv = self.txt_attn_qkv(txt_modulated) | |
| del txt_modulated | |
| txt_q, txt_k, txt_v = rearrange( | |
| txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num | |
| ) | |
| del txt_qkv | |
| # Apply QK-Norm if needed. | |
| self.txt_attn_q_norm.apply_(txt_q).to(txt_v) | |
| self.txt_attn_k_norm.apply_(txt_k).to(txt_v) | |
| # Run actual attention. | |
| q = torch.cat((img_q, txt_q), dim=1) | |
| del img_q, txt_q | |
| k = torch.cat((img_k, txt_k), dim=1) | |
| del img_k, txt_k | |
| v = torch.cat((img_v, txt_v), dim=1) | |
| del img_v, txt_v | |
| # attention computation start | |
| qkv_list = [q,k,v] | |
| del q, k, v | |
| attn = pay_attention( | |
| qkv_list, | |
| attention_mask=attn_mask, | |
| q_lens=seqlens_q, | |
| k_lens=seqlens_kv, | |
| ) | |
| b, s, a, d = attn.shape | |
| attn = attn.reshape(b, s, -1) | |
| del qkv_list | |
| # attention computation end | |
| img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :] | |
| del attn | |
| # Calculate the img bloks. | |
| if condition_type == "token_replace": | |
| img_attn = self.img_attn_proj(img_attn) | |
| apply_gate_and_accumulate_(img[:, :frist_frame_token_num], img_attn[:, :frist_frame_token_num], gate=tr_img_mod1_gate) | |
| apply_gate_and_accumulate_(img[:, frist_frame_token_num:], img_attn[:, frist_frame_token_num:], gate=img_mod1_gate) | |
| del img_attn | |
| img_modulated = self.img_norm2(img) | |
| img_modulated = img_modulated.to(torch.bfloat16) | |
| modulate_( img_modulated[:, :frist_frame_token_num], shift=tr_img_mod2_shift, scale=tr_img_mod2_scale) | |
| modulate_( img_modulated[:, frist_frame_token_num:], shift=img_mod2_shift, scale=img_mod2_scale) | |
| self.img_mlp.apply_(img_modulated) | |
| apply_gate_and_accumulate_(img[:, :frist_frame_token_num], img_modulated[:, :frist_frame_token_num], gate=tr_img_mod2_gate) | |
| apply_gate_and_accumulate_(img[:, frist_frame_token_num:], img_modulated[:, frist_frame_token_num:], gate=img_mod2_gate) | |
| del img_modulated | |
| else: | |
| img_attn = self.img_attn_proj(img_attn) | |
| apply_gate_and_accumulate_(img, img_attn, gate=img_mod1_gate) | |
| del img_attn | |
| img_modulated = self.img_norm2(img) | |
| img_modulated = img_modulated.to(torch.bfloat16) | |
| modulate_( img_modulated , shift=img_mod2_shift, scale=img_mod2_scale) | |
| self.img_mlp.apply_(img_modulated) | |
| apply_gate_and_accumulate_(img, img_modulated, gate=img_mod2_gate) | |
| del img_modulated | |
| # Calculate the txt bloks. | |
| txt_attn = self.txt_attn_proj(txt_attn) | |
| apply_gate_and_accumulate_(txt, txt_attn, gate=txt_mod1_gate) | |
| del txt_attn | |
| txt_modulated = self.txt_norm2(txt) | |
| txt_modulated = txt_modulated.to(torch.bfloat16) | |
| modulate_(txt_modulated, shift=txt_mod2_shift, scale=txt_mod2_scale) | |
| txt_mlp = self.txt_mlp(txt_modulated) | |
| del txt_modulated | |
| apply_gate_and_accumulate_(txt, txt_mlp, gate=txt_mod2_gate) | |
| return img, txt | |
| class MMSingleStreamBlock(nn.Module): | |
| """ | |
| A DiT block with parallel linear layers as described in | |
| https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
| Also refer to (SD3): https://arxiv.org/abs/2403.03206 | |
| (Flux.1): https://github.com/black-forest-labs/flux | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| heads_num: int, | |
| mlp_width_ratio: float = 4.0, | |
| mlp_act_type: str = "gelu_tanh", | |
| qk_norm: bool = True, | |
| qk_norm_type: str = "rms", | |
| qk_scale: float = None, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| attention_mode: str = "sdpa", | |
| ): | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| self.attention_mode = attention_mode | |
| self.deterministic = False | |
| self.hidden_size = hidden_size | |
| self.heads_num = heads_num | |
| head_dim = hidden_size // heads_num | |
| mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
| self.mlp_hidden_dim = mlp_hidden_dim | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| # qkv and mlp_in | |
| self.linear1 = nn.Linear( | |
| hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs | |
| ) | |
| # proj and mlp_out | |
| self.linear2 = nn.Linear( | |
| hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs | |
| ) | |
| qk_norm_layer = get_norm_layer(qk_norm_type) | |
| self.q_norm = ( | |
| qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
| if qk_norm | |
| else nn.Identity() | |
| ) | |
| self.k_norm = ( | |
| qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
| if qk_norm | |
| else nn.Identity() | |
| ) | |
| self.pre_norm = nn.LayerNorm( | |
| hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
| ) | |
| self.mlp_act = get_activation_layer(mlp_act_type)() | |
| self.modulation = ModulateDiT( | |
| hidden_size, | |
| factor=3, | |
| act_layer=get_activation_layer("silu"), | |
| **factory_kwargs, | |
| ) | |
| self.hybrid_seq_parallel_attn = None | |
| def enable_deterministic(self): | |
| self.deterministic = True | |
| def disable_deterministic(self): | |
| self.deterministic = False | |
| def forward( | |
| self, | |
| # x: torch.Tensor, | |
| img: torch.Tensor, | |
| txt: torch.Tensor, | |
| vec: torch.Tensor, | |
| txt_len: int, | |
| attn_mask= None, | |
| seqlens_q: Optional[torch.Tensor] = None, | |
| seqlens_kv: Optional[torch.Tensor] = None, | |
| freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, | |
| condition_type: str = None, | |
| token_replace_vec: torch.Tensor = None, | |
| frist_frame_token_num: int = None, | |
| ) -> torch.Tensor: | |
| ##### More spagheti VRAM optimizations done by DeepBeepMeep ! | |
| # I am sure you are a nice person and as you copy this code, you will give me proper credits: | |
| # Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter | |
| if condition_type == "token_replace": | |
| mod, tr_mod = self.modulation(vec, | |
| condition_type=condition_type, | |
| token_replace_vec=token_replace_vec) | |
| (mod_shift, | |
| mod_scale, | |
| mod_gate) = mod.chunk(3, dim=-1) | |
| (tr_mod_shift, | |
| tr_mod_scale, | |
| tr_mod_gate) = tr_mod.chunk(3, dim=-1) | |
| else: | |
| mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) | |
| img_mod = self.pre_norm(img) | |
| img_mod = img_mod.to(torch.bfloat16) | |
| if condition_type == "token_replace": | |
| modulate_(img_mod[:, :frist_frame_token_num], shift=tr_mod_shift, scale=tr_mod_scale) | |
| modulate_(img_mod[:, frist_frame_token_num:], shift=mod_shift, scale=mod_scale) | |
| else: | |
| modulate_(img_mod, shift=mod_shift, scale=mod_scale) | |
| txt_mod = self.pre_norm(txt) | |
| txt_mod = txt_mod.to(torch.bfloat16) | |
| modulate_(txt_mod, shift=mod_shift, scale=mod_scale) | |
| shape = (*img_mod.shape[:2], self.heads_num, int(img_mod.shape[-1] / self.heads_num) ) | |
| img_q = self.linear1_attn_q(img_mod).view(*shape) | |
| img_k = self.linear1_attn_k(img_mod).view(*shape) | |
| img_v = self.linear1_attn_v(img_mod).view(*shape) | |
| shape = (*txt_mod.shape[:2], self.heads_num, int(txt_mod.shape[-1] / self.heads_num) ) | |
| txt_q = self.linear1_attn_q(txt_mod).view(*shape) | |
| txt_k = self.linear1_attn_k(txt_mod).view(*shape) | |
| txt_v = self.linear1_attn_v(txt_mod).view(*shape) | |
| batch_size = img_mod.shape[0] | |
| # Apply QK-Norm if needed. | |
| # q = self.q_norm(q).to(v) | |
| self.q_norm.apply_(img_q) | |
| self.k_norm.apply_(img_k) | |
| self.q_norm.apply_(txt_q) | |
| self.k_norm.apply_(txt_k) | |
| qklist = [img_q, img_k] | |
| del img_q, img_k | |
| img_q, img_k = apply_rotary_emb(qklist, freqs_cis, head_first=False) | |
| img_q_len=img_q.shape[1] | |
| q = torch.cat((img_q, txt_q), dim=1) | |
| del img_q, txt_q | |
| k = torch.cat((img_k, txt_k), dim=1) | |
| img_kv_len=img_k.shape[1] | |
| del img_k, txt_k | |
| v = torch.cat((img_v, txt_v), dim=1) | |
| del img_v, txt_v | |
| # attention computation start | |
| qkv_list = [q,k,v] | |
| del q, k, v | |
| attn = pay_attention( | |
| qkv_list, | |
| attention_mask=attn_mask, | |
| q_lens = seqlens_q, | |
| k_lens = seqlens_kv, | |
| ) | |
| b, s, a, d = attn.shape | |
| attn = attn.reshape(b, s, -1) | |
| del qkv_list | |
| # attention computation end | |
| x_mod = torch.cat((img_mod, txt_mod), 1) | |
| del img_mod, txt_mod | |
| x_mod_shape = x_mod.shape | |
| x_mod = x_mod.view(-1, x_mod.shape[-1]) | |
| chunk_size = int(x_mod.shape[0]/6) | |
| x_chunks = torch.split(x_mod, chunk_size) | |
| attn = attn.view(-1, attn.shape[-1]) | |
| attn_chunks =torch.split(attn, chunk_size) | |
| for x_chunk, attn_chunk in zip(x_chunks, attn_chunks): | |
| mlp_chunk = self.linear1_mlp(x_chunk) | |
| mlp_chunk = self.mlp_act(mlp_chunk) | |
| attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1) | |
| del attn_chunk, mlp_chunk | |
| x_chunk[...] = self.linear2(attn_mlp_chunk) | |
| del attn_mlp_chunk | |
| x_mod = x_mod.view(x_mod_shape) | |
| if condition_type == "token_replace": | |
| apply_gate_and_accumulate_(img[:, :frist_frame_token_num, :], x_mod[:, :frist_frame_token_num, :], gate=tr_mod_gate) | |
| apply_gate_and_accumulate_(img[:, frist_frame_token_num:, :], x_mod[:, frist_frame_token_num:-txt_len, :], gate=mod_gate) | |
| else: | |
| apply_gate_and_accumulate_(img, x_mod[:, :-txt_len, :], gate=mod_gate) | |
| apply_gate_and_accumulate_(txt, x_mod[:, -txt_len:, :], gate=mod_gate) | |
| return img, txt | |
| class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin): | |
| def preprocess_loras(self, model_type, sd): | |
| if model_type != "hunyuan_i2v" : | |
| return sd | |
| new_sd = {} | |
| for k,v in sd.items(): | |
| repl_list = ["double_blocks", "single_blocks", "final_layer", "img_mlp", "img_attn_qkv", "img_attn_proj","img_mod", "txt_mlp", "txt_attn_qkv","txt_attn_proj", "txt_mod", "linear1", | |
| "linear2", "modulation", "mlp_fc1"] | |
| src_list = [k +"_" for k in repl_list] + ["_" + k for k in repl_list] | |
| tgt_list = [k +"." for k in repl_list] + ["." + k for k in repl_list] | |
| if k.startswith("Hunyuan_video_I2V_lora_"): | |
| # crappy conversion script for non reversible lora naming | |
| k = k.replace("Hunyuan_video_I2V_lora_","diffusion_model.") | |
| k = k.replace("lora_up","lora_B") | |
| k = k.replace("lora_down","lora_A") | |
| if "txt_in_individual" in k: | |
| pass | |
| for s,t in zip(src_list, tgt_list): | |
| k = k.replace(s,t) | |
| if "individual_token_refiner" in k: | |
| k = k.replace("txt_in_individual_token_refiner_blocks_", "txt_in.individual_token_refiner.blocks.") | |
| k = k.replace("_mlp_fc", ".mlp.fc",) | |
| k = k.replace(".mlp_fc", ".mlp.fc",) | |
| new_sd[k] = v | |
| return new_sd | |
| """ | |
| HunyuanVideo Transformer backbone | |
| Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline. | |
| Reference: | |
| [1] Flux.1: https://github.com/black-forest-labs/flux | |
| [2] MMDiT: http://arxiv.org/abs/2403.03206 | |
| Parameters | |
| ---------- | |
| args: argparse.Namespace | |
| The arguments parsed by argparse. | |
| patch_size: list | |
| The size of the patch. | |
| in_channels: int | |
| The number of input channels. | |
| out_channels: int | |
| The number of output channels. | |
| hidden_size: int | |
| The hidden size of the transformer backbone. | |
| heads_num: int | |
| The number of attention heads. | |
| mlp_width_ratio: float | |
| The ratio of the hidden size of the MLP in the transformer block. | |
| mlp_act_type: str | |
| The activation function of the MLP in the transformer block. | |
| depth_double_blocks: int | |
| The number of transformer blocks in the double blocks. | |
| depth_single_blocks: int | |
| The number of transformer blocks in the single blocks. | |
| rope_dim_list: list | |
| The dimension of the rotary embedding for t, h, w. | |
| qkv_bias: bool | |
| Whether to use bias in the qkv linear layer. | |
| qk_norm: bool | |
| Whether to use qk norm. | |
| qk_norm_type: str | |
| The type of qk norm. | |
| guidance_embed: bool | |
| Whether to use guidance embedding for distillation. | |
| text_projection: str | |
| The type of the text projection, default is single_refiner. | |
| use_attention_mask: bool | |
| Whether to use attention mask for text encoder. | |
| dtype: torch.dtype | |
| The dtype of the model. | |
| device: torch.device | |
| The device of the model. | |
| """ | |
| def __init__( | |
| self, | |
| i2v_condition_type, | |
| patch_size: list = [1, 2, 2], | |
| in_channels: int = 4, # Should be VAE.config.latent_channels. | |
| out_channels: int = None, | |
| hidden_size: int = 3072, | |
| heads_num: int = 24, | |
| mlp_width_ratio: float = 4.0, | |
| mlp_act_type: str = "gelu_tanh", | |
| mm_double_blocks_depth: int = 20, | |
| mm_single_blocks_depth: int = 40, | |
| rope_dim_list: List[int] = [16, 56, 56], | |
| qkv_bias: bool = True, | |
| qk_norm: bool = True, | |
| qk_norm_type: str = "rms", | |
| guidance_embed: bool = False, # For modulation. | |
| text_projection: str = "single_refiner", | |
| use_attention_mask: bool = True, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| attention_mode: Optional[str] = "sdpa", | |
| video_condition: bool = False, | |
| audio_condition: bool = False, | |
| avatar = False, | |
| custom = False, | |
| ): | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| # mm_double_blocks_depth , mm_single_blocks_depth = 5, 5 | |
| self.patch_size = patch_size | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| self.unpatchify_channels = self.out_channels | |
| self.guidance_embed = guidance_embed | |
| self.rope_dim_list = rope_dim_list | |
| self.i2v_condition_type = i2v_condition_type | |
| self.attention_mode = attention_mode | |
| self.video_condition = video_condition | |
| self.audio_condition = audio_condition | |
| self.avatar = avatar | |
| self.custom = custom | |
| # Text projection. Default to linear projection. | |
| # Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831 | |
| self.use_attention_mask = use_attention_mask | |
| self.text_projection = text_projection | |
| self.text_states_dim = 4096 | |
| self.text_states_dim_2 = 768 | |
| if hidden_size % heads_num != 0: | |
| raise ValueError( | |
| f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}" | |
| ) | |
| pe_dim = hidden_size // heads_num | |
| if sum(rope_dim_list) != pe_dim: | |
| raise ValueError( | |
| f"Got {rope_dim_list} but expected positional dim {pe_dim}" | |
| ) | |
| self.hidden_size = hidden_size | |
| self.heads_num = heads_num | |
| # image projection | |
| self.img_in = PatchEmbed( | |
| self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs | |
| ) | |
| # text projection | |
| if self.text_projection == "linear": | |
| self.txt_in = TextProjection( | |
| self.text_states_dim, | |
| self.hidden_size, | |
| get_activation_layer("silu"), | |
| **factory_kwargs, | |
| ) | |
| elif self.text_projection == "single_refiner": | |
| self.txt_in = SingleTokenRefiner( | |
| self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs | |
| ) | |
| else: | |
| raise NotImplementedError( | |
| f"Unsupported text_projection: {self.text_projection}" | |
| ) | |
| # time modulation | |
| self.time_in = TimestepEmbedder( | |
| self.hidden_size, get_activation_layer("silu"), **factory_kwargs | |
| ) | |
| # text modulation | |
| self.vector_in = MLPEmbedder( | |
| self.text_states_dim_2, self.hidden_size, **factory_kwargs | |
| ) | |
| # guidance modulation | |
| self.guidance_in = ( | |
| TimestepEmbedder( | |
| self.hidden_size, get_activation_layer("silu"), **factory_kwargs | |
| ) | |
| if guidance_embed | |
| else None | |
| ) | |
| # double blocks | |
| self.double_blocks = nn.ModuleList( | |
| [ | |
| MMDoubleStreamBlock( | |
| self.hidden_size, | |
| self.heads_num, | |
| mlp_width_ratio=mlp_width_ratio, | |
| mlp_act_type=mlp_act_type, | |
| qk_norm=qk_norm, | |
| qk_norm_type=qk_norm_type, | |
| qkv_bias=qkv_bias, | |
| attention_mode = attention_mode, | |
| **factory_kwargs, | |
| ) | |
| for _ in range(mm_double_blocks_depth) | |
| ] | |
| ) | |
| # single blocks | |
| self.single_blocks = nn.ModuleList( | |
| [ | |
| MMSingleStreamBlock( | |
| self.hidden_size, | |
| self.heads_num, | |
| mlp_width_ratio=mlp_width_ratio, | |
| mlp_act_type=mlp_act_type, | |
| qk_norm=qk_norm, | |
| qk_norm_type=qk_norm_type, | |
| attention_mode = attention_mode, | |
| **factory_kwargs, | |
| ) | |
| for _ in range(mm_single_blocks_depth) | |
| ] | |
| ) | |
| self.final_layer = FinalLayer( | |
| self.hidden_size, | |
| self.patch_size, | |
| self.out_channels, | |
| get_activation_layer("silu"), | |
| **factory_kwargs, | |
| ) | |
| if self.video_condition: | |
| self.bg_in = PatchEmbed( | |
| self.patch_size, self.in_channels * 2, self.hidden_size, **factory_kwargs | |
| ) | |
| self.bg_proj = nn.Linear(self.hidden_size, self.hidden_size) | |
| if audio_condition: | |
| if avatar: | |
| self.ref_in = PatchEmbed( | |
| self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs | |
| ) | |
| # -------------------- audio_proj_model -------------------- | |
| self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4) | |
| # -------------------- motion-embeder -------------------- | |
| self.motion_exp = TimestepEmbedder( | |
| self.hidden_size // 4, | |
| get_activation_layer("silu"), | |
| **factory_kwargs | |
| ) | |
| self.motion_pose = TimestepEmbedder( | |
| self.hidden_size // 4, | |
| get_activation_layer("silu"), | |
| **factory_kwargs | |
| ) | |
| self.fps_proj = TimestepEmbedder( | |
| self.hidden_size, | |
| get_activation_layer("silu"), | |
| **factory_kwargs | |
| ) | |
| self.before_proj = nn.Linear(self.hidden_size, self.hidden_size) | |
| # -------------------- audio_insert_model -------------------- | |
| self.double_stream_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] | |
| audio_block_name = "audio_adapter_blocks" | |
| elif custom: | |
| self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4) | |
| self.double_stream_list = [1, 3, 5, 7, 9, 11] | |
| audio_block_name = "audio_models" | |
| self.double_stream_map = {str(i): j for j, i in enumerate(self.double_stream_list)} | |
| self.single_stream_list = [] | |
| self.single_stream_map = {str(i): j+len(self.double_stream_list) for j, i in enumerate(self.single_stream_list)} | |
| setattr(self, audio_block_name, nn.ModuleList([ | |
| PerceiverAttentionCA(dim=3072, dim_head=1024, heads=33) for _ in range(len(self.double_stream_list) + len(self.single_stream_list)) | |
| ])) | |
| def lock_layers_dtypes(self, dtype = torch.float32): | |
| layer_list = [self.final_layer, self.final_layer.linear, self.final_layer.adaLN_modulation[1]] | |
| target_dype= dtype | |
| for current_layer_list, current_dtype in zip([layer_list], [target_dype]): | |
| for layer in current_layer_list: | |
| layer._lock_dtype = dtype | |
| if hasattr(layer, "weight") and layer.weight.dtype != current_dtype : | |
| layer.weight.data = layer.weight.data.to(current_dtype) | |
| if hasattr(layer, "bias"): | |
| layer.bias.data = layer.bias.data.to(current_dtype) | |
| self._lock_dtype = dtype | |
| def enable_deterministic(self): | |
| for block in self.double_blocks: | |
| block.enable_deterministic() | |
| for block in self.single_blocks: | |
| block.enable_deterministic() | |
| def disable_deterministic(self): | |
| for block in self.double_blocks: | |
| block.disable_deterministic() | |
| for block in self.single_blocks: | |
| block.disable_deterministic() | |
| def compute_magcache_threshold(self, start_step, num_inference_steps = 0, speed_factor =0): | |
| skips_step_cache = self.cache | |
| def nearest_interp(src_array, target_length): | |
| src_length = len(src_array) | |
| if target_length == 1: | |
| return np.array([src_array[-1]]) | |
| scale = (src_length - 1) / (target_length - 1) | |
| mapped_indices = np.round(np.arange(target_length) * scale).astype(int) | |
| return src_array[mapped_indices] | |
| def_mag_ratios = np.array([1.0]+ skips_step_cache.def_mag_ratios) | |
| if len(def_mag_ratios) != num_inference_steps: | |
| skips_step_cache.mag_ratios = nearest_interp(def_mag_ratios, num_inference_steps) | |
| else: | |
| skips_step_cache.mag_ratios = def_mag_ratios | |
| best_deltas = None | |
| best_threshold = 0.01 | |
| best_diff = 1000 | |
| best_signed_diff = 1000 | |
| target_nb_steps= int(num_inference_steps / speed_factor) | |
| threshold = 0.01 | |
| while threshold <= 0.6: | |
| nb_steps = 0 | |
| diff = 1000 | |
| accumulated_err, accumulated_steps, accumulated_ratio = 0, 0, 1.0 | |
| for i in range(num_inference_steps): | |
| if i<=start_step: | |
| skip = False | |
| else: | |
| cur_mag_ratio = skips_step_cache.mag_ratios[i] # conditional and unconditional in one list | |
| accumulated_ratio *= cur_mag_ratio # magnitude ratio between current step and the cached step | |
| accumulated_steps += 1 # skip steps plus 1 | |
| cur_skip_err = np.abs(1-accumulated_ratio) # skip error of current steps | |
| accumulated_err += cur_skip_err # accumulated error of multiple steps | |
| if accumulated_err<threshold and accumulated_steps<=skips_step_cache.magcache_K: | |
| skip = True | |
| else: | |
| skip = False | |
| accumulated_err, accumulated_steps, accumulated_ratio = 0, 0, 1.0 | |
| if not skip: | |
| nb_steps += 1 | |
| signed_diff = target_nb_steps - nb_steps | |
| diff = abs(signed_diff) | |
| if diff < best_diff: | |
| best_threshold = threshold | |
| best_diff = diff | |
| best_signed_diff = signed_diff | |
| elif diff > best_diff: | |
| break | |
| threshold += 0.01 | |
| skips_step_cache.magcache_thresh = best_threshold | |
| print(f"Mag Cache, best threshold found:{best_threshold:0.2f} with gain x{num_inference_steps/(target_nb_steps - best_signed_diff):0.2f} for a target of x{speed_factor}") | |
| return best_threshold | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| t: torch.Tensor, # Should be in range(0, 1000). | |
| ref_latents: torch.Tensor=None, | |
| text_states: torch.Tensor = None, | |
| text_mask: torch.Tensor = None, # Now we don't use it. | |
| text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation. | |
| freqs_cos: Optional[torch.Tensor] = None, | |
| freqs_sin: Optional[torch.Tensor] = None, | |
| guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000. | |
| pipeline=None, | |
| x_id = 0, | |
| step_no = 0, | |
| callback = None, | |
| audio_prompts = None, | |
| motion_exp = None, | |
| motion_pose = None, | |
| fps = None, | |
| face_mask = None, | |
| audio_strength = None, | |
| bg_latents = None, | |
| ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
| img = x | |
| bsz, _, ot, oh, ow = x.shape | |
| del x | |
| txt = text_states | |
| tt, th, tw = ( | |
| ot // self.patch_size[0], | |
| oh // self.patch_size[1], | |
| ow // self.patch_size[2], | |
| ) | |
| # Prepare modulation vectors. | |
| vec = self.time_in(t) | |
| if motion_exp != None: | |
| vec += self.motion_exp(motion_exp.view(-1)).view(bsz, -1) # (b, 3072) | |
| if motion_pose != None: | |
| vec += self.motion_pose(motion_pose.view(-1)).view(bsz, -1) # (b, 3072) | |
| if fps != None: | |
| vec += self.fps_proj(fps) # (b, 3072) | |
| if audio_prompts != None: | |
| audio_feature_all = self.audio_proj(audio_prompts) | |
| audio_feature_pad = audio_feature_all[:,:1].repeat(1,3,1,1) | |
| audio_feature_all_insert = torch.cat([audio_feature_pad, audio_feature_all], dim=1).view(bsz, ot, 16, 3072) | |
| audio_feature_all = None | |
| if self.i2v_condition_type == "token_replace": | |
| token_replace_t = torch.zeros_like(t) | |
| token_replace_vec = self.time_in(token_replace_t) | |
| frist_frame_token_num = th * tw | |
| else: | |
| token_replace_vec = None | |
| frist_frame_token_num = None | |
| # token_replace_mask_img = None | |
| # token_replace_mask_txt = None | |
| # text modulation | |
| vec_2 = self.vector_in(text_states_2) | |
| del text_states_2 | |
| vec += vec_2 | |
| if self.i2v_condition_type == "token_replace": | |
| token_replace_vec += vec_2 | |
| del vec_2 | |
| # guidance modulation | |
| if self.guidance_embed: | |
| if guidance is None: | |
| raise ValueError( | |
| "Didn't get guidance strength for guidance distilled model." | |
| ) | |
| # our timestep_embedding is merged into guidance_in(TimestepEmbedder) | |
| vec += self.guidance_in(guidance) | |
| # Embed image and text. | |
| img, shape_mask = self.img_in(img) | |
| if self.avatar: | |
| ref_latents_first = ref_latents[:, :, :1].clone() | |
| ref_latents,_ = self.ref_in(ref_latents) | |
| ref_latents_first,_ = self.img_in(ref_latents_first) | |
| elif self.custom: | |
| if ref_latents != None: | |
| ref_latents, _ = self.img_in(ref_latents) | |
| if bg_latents is not None and self.video_condition: | |
| bg_latents, _ = self.bg_in(bg_latents) | |
| img += self.bg_proj(bg_latents) | |
| if self.text_projection == "linear": | |
| txt = self.txt_in(txt) | |
| elif self.text_projection == "single_refiner": | |
| txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None) | |
| else: | |
| raise NotImplementedError( | |
| f"Unsupported text_projection: {self.text_projection}" | |
| ) | |
| if self.avatar: | |
| img += self.before_proj(ref_latents) | |
| ref_length = ref_latents_first.shape[-2] # [b s c] | |
| img = torch.cat([ref_latents_first, img], dim=-2) # t c | |
| img_len = img.shape[1] | |
| mask_len = img_len - ref_length | |
| if face_mask.shape[2] == 1: | |
| face_mask = face_mask.repeat(1,1,ot,1,1) # repeat if number of mask frame is 1 | |
| face_mask = torch.nn.functional.interpolate(face_mask, size=[ot, shape_mask[-2], shape_mask[-1]], mode="nearest") | |
| # face_mask = face_mask.view(-1,mask_len,1).repeat(1,1,img.shape[-1]).type_as(img) | |
| face_mask = face_mask.view(-1,mask_len,1).type_as(img) | |
| elif ref_latents == None: | |
| ref_length = None | |
| else: | |
| ref_length = ref_latents.shape[-2] | |
| img = torch.cat([ref_latents, img], dim=-2) # t c | |
| txt_seq_len = txt.shape[1] | |
| img_seq_len = img.shape[1] | |
| text_len = text_mask.sum(1) | |
| total_len = text_len + img_seq_len | |
| seqlens_q = seqlens_kv = total_len | |
| attn_mask = None | |
| freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None | |
| should_calc = True | |
| skip_steps_cache = self.cache | |
| if skip_steps_cache is not None: | |
| cache_type = skip_steps_cache.cache_type | |
| if x_id == 0: | |
| skip_steps_cache.should_calc = True | |
| if cache_type == "mag": | |
| if step_no > skip_steps_cache.start_step: | |
| cur_mag_ratio = skip_steps_cache.mag_ratios[step_no] | |
| skip_steps_cache.accumulated_ratio = skip_steps_cache.accumulated_ratio*cur_mag_ratio | |
| cur_skip_err = np.abs(1-skip_steps_cache.accumulated_ratio) | |
| skip_steps_cache.accumulated_err += cur_skip_err | |
| skip_steps_cache.accumulated_steps += 1 | |
| if skip_steps_cache.accumulated_err<=skip_steps_cache.magcache_thresh and skip_steps_cache.accumulated_steps<=skip_steps_cache.magcache_K: | |
| skip_steps_cache.should_calc = False | |
| skip_steps_cache.skipped_steps += 1 | |
| else: | |
| skip_steps_cache.accumulated_ratio, skip_steps_cache.accumulated_steps, skip_steps_cache.accumulated_err = 1.0, 0, 0 | |
| else: | |
| inp = img[0:1] | |
| vec_ = vec[0:1] | |
| ( img_mod1_shift, img_mod1_scale, _ , _ , _ , _ , ) = self.double_blocks[0].img_mod(vec_).chunk(6, dim=-1) | |
| normed_inp = self.double_blocks[0].img_norm1(inp) | |
| normed_inp = normed_inp.to(torch.bfloat16) | |
| modulated_inp = modulate( normed_inp, shift=img_mod1_shift, scale=img_mod1_scale ) | |
| del normed_inp, img_mod1_shift, img_mod1_scale | |
| if step_no <= skip_steps_cache.start_step or step_no == skip_steps_cache.num_steps-1: | |
| skip_steps_cache.accumulated_rel_l1_distance = 0 | |
| else: | |
| rescale_func = np.poly1d(skip_steps_cache.coefficients) | |
| skip_steps_cache.accumulated_rel_l1_distance += rescale_func(((modulated_inp-skip_steps_cache.previous_modulated_input).abs().mean() / skip_steps_cache.previous_modulated_input.abs().mean()).cpu().item()) | |
| if skip_steps_cache.accumulated_rel_l1_distance < skip_steps_cache.rel_l1_thresh: | |
| skip_steps_cache.should_calc = False | |
| skip_steps_cache.skipped_steps += 1 | |
| else: | |
| skip_steps_cache.accumulated_rel_l1_distance = 0 | |
| skip_steps_cache.previous_modulated_input = modulated_inp | |
| should_calc = skip_steps_cache.should_calc | |
| if not should_calc: | |
| img += skip_steps_cache.previous_residual[x_id] | |
| else: | |
| if skip_steps_cache is not None: | |
| skip_steps_cache.previous_residual[x_id] = None | |
| ori_img = img[0:1].clone() | |
| # --------------------- Pass through DiT blocks ------------------------ | |
| for layer_num, block in enumerate(self.double_blocks): | |
| for i in range(len(img)): | |
| if callback != None: | |
| callback(-1, None, False, True) | |
| if pipeline._interrupt: | |
| return None | |
| double_block_args = [ | |
| img[i:i+1], | |
| txt[i:i+1], | |
| vec[i:i+1], | |
| attn_mask, | |
| seqlens_q[i:i+1], | |
| seqlens_kv[i:i+1], | |
| freqs_cis, | |
| self.i2v_condition_type, | |
| token_replace_vec, | |
| frist_frame_token_num, | |
| ] | |
| img[i], txt[i] = block(*double_block_args) | |
| double_block_args = None | |
| # insert audio feature to img | |
| if audio_prompts != None: | |
| audio_adapter = getattr(self.double_blocks[layer_num], "audio_adapter", None) | |
| if audio_adapter != None: | |
| real_img = img[i:i+1,ref_length:].view(1, ot, -1, 3072) | |
| real_img = audio_adapter(audio_feature_all_insert[i:i+1], real_img).view(1, -1, 3072) | |
| if face_mask != None: | |
| real_img *= face_mask[i:i+1] | |
| if audio_strength != None and audio_strength != 1: | |
| real_img *= audio_strength | |
| img[i:i+1, ref_length:] += real_img | |
| real_img = None | |
| for _, block in enumerate(self.single_blocks): | |
| for i in range(len(img)): | |
| if callback != None: | |
| callback(-1, None, False, True) | |
| if pipeline._interrupt: | |
| return None | |
| single_block_args = [ | |
| # x, | |
| img[i:i+1], | |
| txt[i:i+1], | |
| vec[i:i+1], | |
| txt_seq_len, | |
| attn_mask, | |
| seqlens_q[i:i+1], | |
| seqlens_kv[i:i+1], | |
| (freqs_cos, freqs_sin), | |
| self.i2v_condition_type, | |
| token_replace_vec, | |
| frist_frame_token_num, | |
| ] | |
| img[i], txt[i] = block(*single_block_args) | |
| single_block_args = None | |
| # img = x[:, :img_seq_len, ...] | |
| if skip_steps_cache is not None: | |
| if len(img) > 1: | |
| skip_steps_cache.previous_residual[0] = torch.empty_like(img) | |
| for i, (x, residual) in enumerate(zip(img, skip_steps_cache.previous_residual[0])): | |
| if i < len(img) - 1: | |
| residual[...] = torch.sub(x, ori_img) | |
| else: | |
| residual[...] = ori_img | |
| torch.sub(x, ori_img, out=residual) | |
| x = None | |
| else: | |
| skip_steps_cache.previous_residual[x_id] = ori_img | |
| torch.sub(img, ori_img, out=skip_steps_cache.previous_residual[x_id]) | |
| if ref_length != None: | |
| img = img[:, ref_length:] | |
| # ---------------------------- Final layer ------------------------------ | |
| out_dtype = self.final_layer.linear.weight.dtype | |
| vec = vec.to(out_dtype) | |
| img_list = [] | |
| for img_chunk, vec_chunk in zip(img,vec): | |
| img_list.append( self.final_layer(img_chunk.to(out_dtype).unsqueeze(0), vec_chunk.unsqueeze(0))) # (N, T, patch_size ** 2 * out_channels) | |
| img = torch.cat(img_list) | |
| img_list = None | |
| # img = self.unpatchify(img, tt, th, tw) | |
| img = self.unpatchify(img, tt, th, tw) | |
| return img | |
| def unpatchify(self, x, t, h, w): | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| c = self.unpatchify_channels | |
| pt, ph, pw = self.patch_size | |
| assert t * h * w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw)) | |
| x = torch.einsum("nthwcopq->nctohpwq", x) | |
| imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | |
| return imgs | |
| def params_count(self): | |
| counts = { | |
| "double": sum( | |
| [ | |
| sum(p.numel() for p in block.img_attn_qkv.parameters()) | |
| + sum(p.numel() for p in block.img_attn_proj.parameters()) | |
| + sum(p.numel() for p in block.img_mlp.parameters()) | |
| + sum(p.numel() for p in block.txt_attn_qkv.parameters()) | |
| + sum(p.numel() for p in block.txt_attn_proj.parameters()) | |
| + sum(p.numel() for p in block.txt_mlp.parameters()) | |
| for block in self.double_blocks | |
| ] | |
| ), | |
| "single": sum( | |
| [ | |
| sum(p.numel() for p in block.linear1.parameters()) | |
| + sum(p.numel() for p in block.linear2.parameters()) | |
| for block in self.single_blocks | |
| ] | |
| ), | |
| "total": sum(p.numel() for p in self.parameters()), | |
| } | |
| counts["attn+mlp"] = counts["double"] + counts["single"] | |
| return counts | |
| ################################################################################# | |
| # HunyuanVideo Configs # | |
| ################################################################################# | |
| HUNYUAN_VIDEO_CONFIG = { | |
| "HYVideo-T/2": { | |
| "mm_double_blocks_depth": 20, | |
| "mm_single_blocks_depth": 40, | |
| "rope_dim_list": [16, 56, 56], | |
| "hidden_size": 3072, | |
| "heads_num": 24, | |
| "mlp_width_ratio": 4, | |
| }, | |
| "HYVideo-T/2-cfgdistill": { | |
| "mm_double_blocks_depth": 20, | |
| "mm_single_blocks_depth": 40, | |
| "rope_dim_list": [16, 56, 56], | |
| "hidden_size": 3072, | |
| "heads_num": 24, | |
| "mlp_width_ratio": 4, | |
| "guidance_embed": True, | |
| }, | |
| "HYVideo-S/2": { | |
| "mm_double_blocks_depth": 6, | |
| "mm_single_blocks_depth": 12, | |
| "rope_dim_list": [12, 42, 42], | |
| "hidden_size": 480, | |
| "heads_num": 5, | |
| "mlp_width_ratio": 4, | |
| }, | |
| 'HYVideo-T/2-custom': { # 9.0B / 12.5B | |
| "mm_double_blocks_depth": 20, | |
| "mm_single_blocks_depth": 40, | |
| "rope_dim_list": [16, 56, 56], | |
| "hidden_size": 3072, | |
| "heads_num": 24, | |
| "mlp_width_ratio": 4, | |
| 'custom' : True | |
| }, | |
| 'HYVideo-T/2-custom-audio': { # 9.0B / 12.5B | |
| "mm_double_blocks_depth": 20, | |
| "mm_single_blocks_depth": 40, | |
| "rope_dim_list": [16, 56, 56], | |
| "hidden_size": 3072, | |
| "heads_num": 24, | |
| "mlp_width_ratio": 4, | |
| 'custom' : True, | |
| 'audio_condition' : True, | |
| }, | |
| 'HYVideo-T/2-custom-edit': { # 9.0B / 12.5B | |
| "mm_double_blocks_depth": 20, | |
| "mm_single_blocks_depth": 40, | |
| "rope_dim_list": [16, 56, 56], | |
| "hidden_size": 3072, | |
| "heads_num": 24, | |
| "mlp_width_ratio": 4, | |
| 'custom' : True, | |
| 'video_condition' : True, | |
| }, | |
| 'HYVideo-T/2-avatar': { # 9.0B / 12.5B | |
| 'mm_double_blocks_depth': 20, | |
| 'mm_single_blocks_depth': 40, | |
| 'rope_dim_list': [16, 56, 56], | |
| 'hidden_size': 3072, | |
| 'heads_num': 24, | |
| 'mlp_width_ratio': 4, | |
| 'avatar': True, | |
| 'audio_condition' : True, | |
| }, | |
| } |