Spaces:
Configuration error
Configuration error
File size: 26,485 Bytes
2b67076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import torch
import torch.nn as nn
from typing import Dict, Tuple, Optional, Union
import warnings
try:
from safetensors.torch import save_file as save_safetensors
SAFETENSORS_AVAILABLE = True
except ImportError:
SAFETENSORS_AVAILABLE = False
warnings.warn("safetensors not available. Install with: pip install safetensors")
class LoRAExtractor:
"""
Extract LoRA tensors from the difference between original and fine-tuned models.
LoRA (Low-Rank Adaptation) decomposes weight updates as ΔW = B @ A where:
- A (lora_down): [rank, input_dim] matrix (saved as diffusion_model.param_name.lora_down.weight)
- B (lora_up): [output_dim, rank] matrix (saved as diffusion_model.param_name.lora_up.weight)
The decomposition uses SVD: ΔW = U @ S @ V^T ≈ (U @ S) @ V^T where:
- lora_up = U @ S (contains all singular values)
- lora_down = V^T (orthogonal matrix)
Parameter handling based on name AND dimension:
- 2D weight tensors: LoRA decomposition (.lora_down.weight, .lora_up.weight)
- Any bias tensors: direct difference (.diff_b)
- Other weight tensors (1D, 3D, 4D): full difference (.diff)
Progress tracking and test mode are available for format validation and debugging.
"""
def __init__(self, rank: int = 128, threshold: float = 1e-6, test_mode: bool = False, show_reconstruction_errors: bool = False):
"""
Initialize LoRA extractor.
Args:
rank: Target rank for LoRA decomposition (default: 128)
threshold: Minimum singular value threshold for decomposition
test_mode: If True, creates zero tensors without computation for format testing
show_reconstruction_errors: If True, calculates and displays reconstruction error for each LoRA pair
"""
self.rank = rank
self.threshold = threshold
self.test_mode = test_mode
self.show_reconstruction_errors = show_reconstruction_errors
def extract_lora_from_state_dicts(
self,
original_state_dict: Dict[str, torch.Tensor],
finetuned_state_dict: Dict[str, torch.Tensor],
device: str = 'cpu',
show_progress: bool = True
) -> Dict[str, torch.Tensor]:
"""
Extract LoRA tensors for all matching parameters between two state dictionaries.
Args:
original_state_dict: State dict of the original model
finetuned_state_dict: State dict of the fine-tuned model
device: Device to perform computations on
show_progress: Whether to display progress information
Returns:
Dictionary mapping parameter names to their LoRA components:
- For 2D weight tensors: 'diffusion_model.layer.lora_down.weight', 'diffusion_model.layer.lora_up.weight'
- For any bias tensors: 'diffusion_model.layer.diff_b'
- For other weight tensors (1D, 3D, 4D): 'diffusion_model.layer.diff'
"""
lora_tensors = {}
# Find common parameters and sort alphabetically for consistent processing order
common_keys = sorted(set(original_state_dict.keys()) & set(finetuned_state_dict.keys()))
total_params = len(common_keys)
processed_params = 0
extracted_components = 0
if show_progress:
print(f"Starting LoRA extraction for {total_params} parameters on {device}...")
# Pre-move threshold to device for faster comparisons
threshold_tensor = torch.tensor(self.threshold, device=device)
for param_name in common_keys:
if show_progress:
processed_params += 1
progress_pct = (processed_params / total_params) * 100
print(f"[{processed_params:4d}/{total_params}] ({progress_pct:5.1f}%) Processing: {param_name}")
# Move tensors to device once
original_tensor = original_state_dict[param_name]
finetuned_tensor = finetuned_state_dict[param_name]
# Check if tensors have the same shape before moving to device
if original_tensor.shape != finetuned_tensor.shape:
if show_progress:
print(f" → Shape mismatch: {original_tensor.shape} vs {finetuned_tensor.shape}. Skipping.")
continue
# Move to device and compute difference in one go for efficiency (skip in test mode)
if not self.test_mode:
if original_tensor.device != torch.device(device):
original_tensor = original_tensor.to(device, non_blocking=True)
if finetuned_tensor.device != torch.device(device):
finetuned_tensor = finetuned_tensor.to(device, non_blocking=True)
# Compute difference on device
delta_tensor = finetuned_tensor - original_tensor
# Fast GPU-based threshold check
max_abs_diff = torch.max(torch.abs(delta_tensor))
if max_abs_diff <= threshold_tensor:
if show_progress:
print(f" → No significant changes detected (max diff: {max_abs_diff:.2e}), skipping")
continue
else:
# Test mode - create dummy delta tensor with original shape and dtype
delta_tensor = torch.zeros_like(original_tensor)
if device != 'cpu':
delta_tensor = delta_tensor.to(device)
# Extract LoRA components based on tensor dimensionality
extracted_tensors = self._extract_lora_components(delta_tensor, param_name)
if extracted_tensors:
lora_tensors.update(extracted_tensors)
extracted_components += len(extracted_tensors)
if show_progress:
# Show meaningful component names instead of just 'weight'
component_names = []
for key in extracted_tensors.keys():
if key.endswith('.lora_down.weight'):
component_names.append('lora_down')
elif key.endswith('.lora_up.weight'):
component_names.append('lora_up')
elif key.endswith('.diff_b'):
component_names.append('diff_b')
elif key.endswith('.diff'):
component_names.append('diff')
else:
component_names.append(key.split('.')[-1])
print(f" → Extracted {len(extracted_tensors)} components: {component_names}")
if show_progress:
print(f"\nExtraction completed!")
print(f"Processed: {processed_params}/{total_params} parameters")
print(f"Extracted: {extracted_components} LoRA components")
print(f"LoRA rank: {self.rank}")
# Summary by type
lora_down_count = sum(1 for k in lora_tensors.keys() if k.endswith('.lora_down.weight'))
lora_up_count = sum(1 for k in lora_tensors.keys() if k.endswith('.lora_up.weight'))
diff_b_count = sum(1 for k in lora_tensors.keys() if k.endswith('.diff_b'))
diff_count = sum(1 for k in lora_tensors.keys() if k.endswith('.diff'))
print(f"Summary: {lora_down_count} lora_down, {lora_up_count} lora_up, {diff_b_count} diff_b, {diff_count} diff")
return lora_tensors
def _extract_lora_components(
self,
delta_tensor: torch.Tensor,
param_name: str
) -> Optional[Dict[str, torch.Tensor]]:
"""
Extract LoRA components from a delta tensor.
Args:
delta_tensor: Difference between fine-tuned and original tensor
param_name: Name of the parameter (for generating output keys)
Returns:
Dictionary with modified parameter names as keys and tensors as values
"""
# Determine if this is a weight or bias parameter from the original name
is_weight = 'weight' in param_name.lower()
is_bias = 'bias' in param_name.lower()
# Remove .weight or .bias suffix from parameter name
base_name = param_name
if base_name.endswith('.weight'):
base_name = base_name[:-7] # Remove '.weight'
elif base_name.endswith('.bias'):
base_name = base_name[:-5] # Remove '.bias'
# Add diffusion_model prefix
base_name = f"diffusion_model.{base_name}"
if self.test_mode:
# Fast test mode - create zero tensors without computation
if delta_tensor.dim() == 2 and is_weight:
# 2D weight tensor -> LoRA decomposition
output_dim, input_dim = delta_tensor.shape
rank = min(self.rank, min(input_dim, output_dim))
return {
f"{base_name}.lora_down.weight": torch.zeros(rank, input_dim, dtype=delta_tensor.dtype, device=delta_tensor.device),
f"{base_name}.lora_up.weight": torch.zeros(output_dim, rank, dtype=delta_tensor.dtype, device=delta_tensor.device)
}
elif is_bias:
# Any bias tensor (1D, 2D, etc.) -> .diff_b
return {f"{base_name}.diff_b": torch.zeros_like(delta_tensor)}
else:
# Any weight tensor that's not 2D, or other tensors -> .diff
return {f"{base_name}.diff": torch.zeros_like(delta_tensor)}
# Normal mode - check dimensions AND parameter type
if delta_tensor.dim() == 2 and is_weight:
# 2D weight tensor (linear layer weight) - apply SVD decomposition
return self._decompose_2d_tensor(delta_tensor, base_name)
elif is_bias:
# Any bias tensor (regardless of dimension) - save as .diff_b
return {f"{base_name}.diff_b": delta_tensor.clone()}
else:
# Any other tensor (weight tensors that are 1D, 3D, 4D, or unknown tensors) - save as .diff
return {f"{base_name}.diff": delta_tensor.clone()}
def _decompose_2d_tensor(self, delta_tensor: torch.Tensor, base_name: str) -> Dict[str, torch.Tensor]:
"""
Decompose a 2D tensor using SVD on GPU for maximum performance.
Args:
delta_tensor: 2D tensor to decompose (output_dim × input_dim)
base_name: Base name for the parameter (already processed, with diffusion_model prefix)
Returns:
Dictionary with lora_down and lora_up tensors:
- lora_down: [rank, input_dim]
- lora_up: [output_dim, rank]
"""
# Store original dtype and device
dtype = delta_tensor.dtype
device = delta_tensor.device
# Perform SVD in float32 for numerical stability, but keep on same device
delta_float = delta_tensor.float() if delta_tensor.dtype != torch.float32 else delta_tensor
U, S, Vt = torch.linalg.svd(delta_float, full_matrices=False)
# Determine effective rank (number of significant singular values)
# Use GPU-accelerated operations
significant_mask = S > self.threshold
effective_rank = min(self.rank, torch.sum(significant_mask).item())
effective_rank = self.rank
if effective_rank == 0:
warnings.warn(f"No significant singular values found for {base_name}")
effective_rank = 1
# Create LoRA matrices with correct SVD decomposition
# Standard approach: put all singular values in lora_up, leave lora_down as V^T
# This ensures: lora_up @ lora_down = (U @ S) @ V^T = U @ S @ V^T = ΔW ✓
lora_up = U[:, :effective_rank] * S[:effective_rank].unsqueeze(0) # [output_dim, rank]
lora_down = Vt[:effective_rank, :] # [rank, input_dim]
# Convert back to original dtype (keeping on same device)
lora_up = lora_up.to(dtype)
lora_down = lora_down.to(dtype)
# Calculate and display reconstruction error if requested
if self.show_reconstruction_errors:
with torch.no_grad():
# Reconstruct the original delta tensor
reconstructed = lora_up @ lora_down
# Calculate various error metrics
mse_error = torch.mean((delta_tensor - reconstructed) ** 2).item()
max_error = torch.max(torch.abs(delta_tensor - reconstructed)).item()
# Relative error
original_norm = torch.norm(delta_tensor).item()
relative_error = (torch.norm(delta_tensor - reconstructed).item() / original_norm * 100) if original_norm > 0 else 0
# Cosine similarity
delta_flat = delta_tensor.flatten()
reconstructed_flat = reconstructed.flatten()
if torch.norm(delta_flat) > 0 and torch.norm(reconstructed_flat) > 0:
cosine_sim = torch.nn.functional.cosine_similarity(
delta_flat.unsqueeze(0),
reconstructed_flat.unsqueeze(0)
).item()
else:
cosine_sim = 0.0
# Extract parameter name for display (remove diffusion_model prefix)
display_name = base_name[16:] if base_name.startswith('diffusion_model.') else base_name
print(f" LoRA Error [{display_name}]: MSE={mse_error:.2e}, Max={max_error:.2e}, Rel={relative_error:.2f}%, Cos={cosine_sim:.4f}, Rank={effective_rank}")
return {
f"{base_name}.lora_down.weight": lora_down,
f"{base_name}.lora_up.weight": lora_up
}
def verify_reconstruction(
self,
lora_tensors: Dict[str, torch.Tensor],
original_deltas: Dict[str, torch.Tensor]
) -> Dict[str, float]:
"""
Verify the quality of LoRA reconstruction for 2D tensors.
Args:
lora_tensors: Dictionary with LoRA tensors (flat structure with diffusion_model prefix)
original_deltas: Dictionary with original delta tensors (without prefix)
Returns:
Dictionary mapping parameter names to reconstruction errors
"""
reconstruction_errors = {}
# Group LoRA components by base parameter name
lora_pairs = {}
for key, tensor in lora_tensors.items():
if key.endswith('.lora_down.weight'):
base_name = key[:-18] # Remove '.lora_down.weight'
# Remove diffusion_model prefix for matching with original_deltas
if base_name.startswith('diffusion_model.'):
original_key = base_name[16:] # Remove 'diffusion_model.'
else:
original_key = base_name
if base_name not in lora_pairs:
lora_pairs[base_name] = {'original_key': original_key}
lora_pairs[base_name]['lora_down'] = tensor
elif key.endswith('.lora_up.weight'):
base_name = key[:-16] # Remove '.lora_up.weight'
# Remove diffusion_model prefix for matching with original_deltas
if base_name.startswith('diffusion_model.'):
original_key = base_name[16:] # Remove 'diffusion_model.'
else:
original_key = base_name
if base_name not in lora_pairs:
lora_pairs[base_name] = {'original_key': original_key}
lora_pairs[base_name]['lora_up'] = tensor
# Verify reconstruction for each complete LoRA pair
for base_name, components in lora_pairs.items():
if 'lora_down' in components and 'lora_up' in components and 'original_key' in components:
original_key = components['original_key']
if original_key in original_deltas:
lora_down = components['lora_down']
lora_up = components['lora_up']
original_delta = original_deltas[original_key]
# Get effective rank from the actual tensor dimensions
effective_rank = min(lora_up.shape[1], lora_down.shape[0])
# Reconstruct: ΔW = lora_up @ lora_down (no additional scaling needed since it's built into lora_up)
reconstructed = lora_up @ lora_down
# Compute reconstruction error
mse_error = torch.mean((original_delta - reconstructed) ** 2).item()
reconstruction_errors[base_name] = mse_error
return reconstruction_errors
def compute_reconstruction_errors(
original_tensor: torch.Tensor,
reconstructed_tensor: torch.Tensor,
target_tensor: torch.Tensor
) -> Dict[str, float]:
"""
Compute various error metrics between original, reconstructed, and target tensors.
Args:
original_tensor: Original tensor before fine-tuning
reconstructed_tensor: Reconstructed tensor from LoRA (original + LoRA_reconstruction)
target_tensor: Target tensor (fine-tuned)
Returns:
Dictionary with error metrics
"""
# Ensure all tensors are on the same device and have the same shape
device = original_tensor.device
reconstructed_tensor = reconstructed_tensor.to(device)
target_tensor = target_tensor.to(device)
# Compute differences
delta_original = target_tensor - original_tensor # True fine-tuning difference
delta_reconstructed = reconstructed_tensor - original_tensor # LoRA reconstructed difference
reconstruction_error = target_tensor - reconstructed_tensor # Final reconstruction error
# Compute various error metrics
errors = {}
# Mean Squared Error (MSE)
errors['mse_delta'] = torch.mean((delta_original - delta_reconstructed) ** 2).item()
errors['mse_final'] = torch.mean(reconstruction_error ** 2).item()
# Mean Absolute Error (MAE)
errors['mae_delta'] = torch.mean(torch.abs(delta_original - delta_reconstructed)).item()
errors['mae_final'] = torch.mean(torch.abs(reconstruction_error)).item()
# Relative errors (as percentages)
original_norm = torch.norm(original_tensor).item()
target_norm = torch.norm(target_tensor).item()
delta_norm = torch.norm(delta_original).item()
if original_norm > 0:
errors['relative_error_original'] = (torch.norm(reconstruction_error).item() / original_norm) * 100
if target_norm > 0:
errors['relative_error_target'] = (torch.norm(reconstruction_error).item() / target_norm) * 100
if delta_norm > 0:
errors['relative_error_delta'] = (torch.norm(delta_original - delta_reconstructed).item() / delta_norm) * 100
# Cosine similarity (higher is better, 1.0 = perfect)
delta_flat = delta_original.flatten()
reconstructed_flat = delta_reconstructed.flatten()
if torch.norm(delta_flat) > 0 and torch.norm(reconstructed_flat) > 0:
cosine_sim = torch.nn.functional.cosine_similarity(
delta_flat.unsqueeze(0),
reconstructed_flat.unsqueeze(0)
).item()
errors['cosine_similarity'] = cosine_sim
else:
errors['cosine_similarity'] = 0.0
# Signal-to-noise ratio (SNR) in dB
if errors['mse_final'] > 0:
signal_power = torch.mean(target_tensor ** 2).item()
errors['snr_db'] = 10 * torch.log10(signal_power / errors['mse_final']).item()
else:
errors['snr_db'] = float('inf')
return errors
# Example usage and utility functions
def load_and_extract_lora(
original_model_path: str,
finetuned_model_path: str,
rank: int = 128,
device: str = 'cuda' if torch.cuda.is_available() else 'cpu',
show_progress: bool = True,
test_mode: bool = False,
show_reconstruction_errors: bool = False
) -> Dict[str, torch.Tensor]:
"""
Convenience function to load models and extract LoRA tensors with GPU acceleration.
Args:
original_model_path: Path to original model state dict
finetuned_model_path: Path to fine-tuned model state dict
rank: Target LoRA rank (default: 128)
device: Device for computation (defaults to GPU if available)
show_progress: Whether to display progress information
test_mode: If True, creates zero tensors without computation for format testing
show_reconstruction_errors: If True, calculates and displays reconstruction error for each LoRA pair
Returns:
Dictionary of LoRA tensors with modified parameter names as keys
"""
# Load state dictionaries directly to CPU first (safetensors loads to CPU by default)
if show_progress:
print(f"Loading original model from: {original_model_path}")
original_state_dict = torch.load(original_model_path, map_location='cpu')
if show_progress:
print(f"Loading fine-tuned model from: {finetuned_model_path}")
finetuned_state_dict = torch.load(finetuned_model_path, map_location='cpu')
# Handle nested state dicts (if wrapped in 'model' key or similar)
if 'state_dict' in original_state_dict:
original_state_dict = original_state_dict['state_dict']
if 'state_dict' in finetuned_state_dict:
finetuned_state_dict = finetuned_state_dict['state_dict']
# Extract LoRA tensors with GPU acceleration
extractor = LoRAExtractor(rank=rank, test_mode=test_mode, show_reconstruction_errors=show_reconstruction_errors)
lora_tensors = extractor.extract_lora_from_state_dicts(
original_state_dict,
finetuned_state_dict,
device=device,
show_progress=show_progress
)
return lora_tensors
def save_lora_tensors(lora_tensors: Dict[str, torch.Tensor], save_path: str):
"""Save extracted LoRA tensors to disk."""
torch.save(lora_tensors, save_path)
print(f"LoRA tensors saved to {save_path}")
def save_lora_safetensors(lora_tensors: Dict[str, torch.Tensor], save_path: str, rank: int = None):
"""Save extracted LoRA tensors as safetensors format with metadata."""
if not SAFETENSORS_AVAILABLE:
raise ImportError("safetensors not available. Install with: pip install safetensors")
# Ensure all tensors are contiguous for safetensors
contiguous_tensors = {k: v.contiguous() if v.is_floating_point() else v.contiguous()
for k, v in lora_tensors.items()}
# Add rank as metadata if provided
metadata = {}
if rank is not None:
metadata["rank"] = str(rank)
save_safetensors(contiguous_tensors, save_path, metadata=metadata if metadata else None)
print(f"LoRA tensors saved as safetensors to {save_path}")
if metadata:
print(f"Metadata: {metadata}")
def analyze_lora_tensors(lora_tensors: Dict[str, torch.Tensor]):
"""Analyze the extracted LoRA tensors."""
print(f"Extracted LoRA tensors ({len(lora_tensors)} components):")
# Group by type for better organization
lora_down_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.lora_down.weight')}
lora_up_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.lora_up.weight')}
diff_b_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.diff_b')}
diff_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.diff')}
if lora_down_tensors:
print(f"\nLinear LoRA down matrices ({len(lora_down_tensors)}):")
for name, tensor in lora_down_tensors.items():
print(f" {name}: {tensor.shape}")
if lora_up_tensors:
print(f"\nLinear LoRA up matrices ({len(lora_up_tensors)}):")
for name, tensor in lora_up_tensors.items():
print(f" {name}: {tensor.shape}")
if diff_b_tensors:
print(f"\nBias differences ({len(diff_b_tensors)}):")
for name, tensor in diff_b_tensors.items():
print(f" {name}: {tensor.shape}")
if diff_tensors:
print(f"\nFull weight differences ({len(diff_tensors)}):")
print(" (Includes conv, modulation, and other multi-dimensional tensors)")
for name, tensor in diff_tensors.items():
print(f" {name}: {tensor.shape}")
# Example usage
if __name__ == "__main__":
from safetensors.torch import load_file as load_safetensors
# Load original and fine-tuned models from safetensors files
original_state_dict = load_safetensors("ckpts/wan2.2_text2video_14B_high_mbf16.safetensors")
finetuned_state_dict = load_safetensors("ckpts/wan2.2_text2video_14B_low_mbf16.safetensors")
# original_state_dict = load_safetensors("ckpts/flux1-dev_bf16.safetensors")
# finetuned_state_dict = load_safetensors("ckpts/flux1-schnell_bf16.safetensors")
print(f"Loaded original model with {len(original_state_dict)} parameters")
print(f"Loaded fine-tuned model with {len(finetuned_state_dict)} parameters")
# extractor_test = LoRAExtractor(test_mode=True)
extractor_test = LoRAExtractor(show_reconstruction_errors=True, rank=128)
lora_tensors_test = extractor_test.extract_lora_from_state_dicts(
original_state_dict,
finetuned_state_dict,
device='cuda',
show_progress=True
)
print("\nTest mode tensor keys (first 10):")
for i, key in enumerate(sorted(lora_tensors_test.keys())):
if i < 10:
print(f" {key}: {lora_tensors_test[key].shape}")
elif i == 10:
print(f" ... and {len(lora_tensors_test) - 10} more")
break
# Always save as extracted_lora.safetensors for easier testing
save_lora_safetensors(lora_tensors_test, "extracted_lora.safetensors")
|