File size: 12,253 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
from torch import nn
import torch
from typing import Tuple, Optional
from einops import rearrange
import torch.nn.functional as F
import math
from shared.attention import pay_attention

MEMORY_LAYOUT = {
    "flash": (
        lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
        lambda x: x,
    ),
    "torch": (
        lambda x: x.transpose(1, 2),
        lambda x: x.transpose(1, 2),
    ),
    "vanilla": (
        lambda x: x.transpose(1, 2),
        lambda x: x.transpose(1, 2),
    ),
}


def attention(
    q,
    k,
    v,
    mode="torch",
    drop_rate=0,
    attn_mask=None,
    causal=False,
    max_seqlen_q=None,
    batch_size=1,
):
    """
    Perform QKV self attention.

    Args:
        q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
        k (torch.Tensor): Key tensor with shape [b, s1, a, d]
        v (torch.Tensor): Value tensor with shape [b, s1, a, d]
        mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
        drop_rate (float): Dropout rate in attention map. (default: 0)
        attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
            (default: None)
        causal (bool): Whether to use causal attention. (default: False)
        cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
            used to index into q.
        cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
            used to index into kv.
        max_seqlen_q (int): The maximum sequence length in the batch of q.
        max_seqlen_kv (int): The maximum sequence length in the batch of k and v.

    Returns:
        torch.Tensor: Output tensor after self attention with shape [b, s, ad]
    """
    pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]

    if mode == "torch":
        if attn_mask is not None and attn_mask.dtype != torch.bool:
            attn_mask = attn_mask.to(q.dtype)
        x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)

    elif mode == "flash":
        x = flash_attn_func(
            q,
            k,
            v,
        )
        x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1])  # reshape x to [b, s, a, d]
    elif mode == "vanilla":
        scale_factor = 1 / math.sqrt(q.size(-1))

        b, a, s, _ = q.shape
        s1 = k.size(2)
        attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
        if causal:
            # Only applied to self attention
            assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
            temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
            attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
            attn_bias.to(q.dtype)

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
            else:
                attn_bias += attn_mask

        attn = (q @ k.transpose(-2, -1)) * scale_factor
        attn += attn_bias
        attn = attn.softmax(dim=-1)
        attn = torch.dropout(attn, p=drop_rate, train=True)
        x = attn @ v
    else:
        raise NotImplementedError(f"Unsupported attention mode: {mode}")

    x = post_attn_layout(x)
    b, s, a, d = x.shape
    out = x.reshape(b, s, -1)
    return out


class CausalConv1d(nn.Module):

    def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode="replicate", **kwargs):
        super().__init__()

        self.pad_mode = pad_mode
        padding = (kernel_size - 1, 0)  # T
        self.time_causal_padding = padding

        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)

    def forward(self, x):
        x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
        return self.conv(x)



class FaceEncoder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, dtype=None, device=None):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()

        self.num_heads = num_heads
        self.conv1_local = CausalConv1d(in_dim, 1024 * num_heads, 3, stride=1)
        self.norm1 = nn.LayerNorm(hidden_dim // 8, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.act = nn.SiLU()
        self.conv2 = CausalConv1d(1024, 1024, 3, stride=2)
        self.conv3 = CausalConv1d(1024, 1024, 3, stride=2)

        self.out_proj = nn.Linear(1024, hidden_dim)
        self.norm1 = nn.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.norm2 = nn.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.norm3 = nn.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.padding_tokens = nn.Parameter(torch.zeros(1, 1, 1, hidden_dim))

    def forward(self, x):
        
        x = rearrange(x, "b t c -> b c t")
        b, c, t = x.shape

        x = self.conv1_local(x)
        x = rearrange(x, "b (n c) t -> (b n) t c", n=self.num_heads)
        
        x = self.norm1(x)
        x = self.act(x)
        x = rearrange(x, "b t c -> b c t")
        x = self.conv2(x)
        x = rearrange(x, "b c t -> b t c")
        x = self.norm2(x)
        x = self.act(x)
        x = rearrange(x, "b t c -> b c t")
        x = self.conv3(x)
        x = rearrange(x, "b c t -> b t c")
        x = self.norm3(x)
        x = self.act(x)
        x = self.out_proj(x)
        x = rearrange(x, "(b n) t c -> b t n c", b=b)
        padding = self.padding_tokens.repeat(b, x.shape[1], 1, 1)
        x = torch.cat([x, padding], dim=-2)
        x_local = x.clone()

        return x_local



class RMSNorm(nn.Module):
    def __init__(
        self,
        dim: int,
        elementwise_affine=True,
        eps: float = 1e-6,
        device=None,
        dtype=None,
    ):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        if hasattr(self, "weight"):
            output = output * self.weight
        return output


def get_norm_layer(norm_layer):
    """
    Get the normalization layer.

    Args:
        norm_layer (str): The type of normalization layer.

    Returns:
        norm_layer (nn.Module): The normalization layer.
    """
    if norm_layer == "layer":
        return nn.LayerNorm
    elif norm_layer == "rms":
        return RMSNorm
    else:
        raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")


class FaceAdapter(nn.Module):
    def __init__(
        self,
        hidden_dim: int,
        heads_num: int,
        qk_norm: bool = True,
        qk_norm_type: str = "rms",
        num_adapter_layers: int = 1,
        dtype=None,
        device=None,
    ):

        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()
        self.hidden_size = hidden_dim
        self.heads_num = heads_num
        self.fuser_blocks = nn.ModuleList(
            [
                FaceBlock(
                    self.hidden_size,
                    self.heads_num,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    **factory_kwargs,
                )
                for _ in range(num_adapter_layers)
            ]
        )

    def forward(
        self,
        x: torch.Tensor,
        motion_embed: torch.Tensor,
        idx: int,
        freqs_cis_q: Tuple[torch.Tensor, torch.Tensor] = None,
        freqs_cis_k: Tuple[torch.Tensor, torch.Tensor] = None,
    ) -> torch.Tensor:

        return self.fuser_blocks[idx](x, motion_embed, freqs_cis_q, freqs_cis_k)



class FaceBlock(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        heads_num: int,
        qk_norm: bool = True,
        qk_norm_type: str = "rms",
        qk_scale: float = None,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.deterministic = False
        self.hidden_size = hidden_size
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        self.scale = qk_scale or head_dim**-0.5
       
        self.linear1_kv = nn.Linear(hidden_size, hidden_size * 2, **factory_kwargs)
        self.linear1_q = nn.Linear(hidden_size, hidden_size, **factory_kwargs)

        self.linear2 = nn.Linear(hidden_size, hidden_size, **factory_kwargs)

        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )

        self.pre_norm_feat = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        self.pre_norm_motion = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)

    def forward(
        self,
        x: torch.Tensor,
        motion_vec: torch.Tensor,
        motion_mask: Optional[torch.Tensor] = None,
        use_context_parallel=False,
    ) -> torch.Tensor:
        
        B, T, N, C = motion_vec.shape
        T_comp = T

        x_motion = self.pre_norm_motion(motion_vec)
        x_feat = self.pre_norm_feat(x)

        kv = self.linear1_kv(x_motion)
        q = self.linear1_q(x_feat)

        k, v = rearrange(kv, "B L N (K H D) -> K B L N H D", K=2, H=self.heads_num)
        q = rearrange(q, "B S (H D) -> B S H D", H=self.heads_num)

        # Apply QK-Norm if needed.
        q = self.q_norm(q).to(v)
        k = self.k_norm(k).to(v)

        k = rearrange(k, "B L N H D -> (B L) N H D")  
        v = rearrange(v, "B L N H D -> (B L) N H D") 

        if use_context_parallel:
            q = gather_forward(q, dim=1)

        q = rearrange(q, "B (L S) H D -> (B L) S H D", L=T_comp)  
        # Compute attention.
    # Size([batches, tokens, heads, head_features])
        qkv_list = [q, k, v]
        del q,k,v
        attn = pay_attention(qkv_list)
        # attn = attention(
        #     q,
        #     k,
        #     v,
        #     max_seqlen_q=q.shape[1],
        #     batch_size=q.shape[0],
        # )

        attn = attn.reshape(*attn.shape[:2], -1)
        attn = rearrange(attn, "(B L) S C -> B (L S) C", L=T_comp)
        # if use_context_parallel:
        #     attn = torch.chunk(attn, get_world_size(), dim=1)[get_rank()]

        output = self.linear2(attn)

        if motion_mask is not None:
            output = output * rearrange(motion_mask, "B T H W -> B (T H W)").unsqueeze(-1)

        return output