Spaces:
Runtime error
Runtime error
| '''from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
| import gradio as grad | |
| import ast | |
| #mdl_name = "deepset/roberta-base-squad2" | |
| #my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) | |
| mdl_name = "distilbert-base-cased-distilled-squad" | |
| my_pipeline = pipeline('question-answering', model=mdl_name,tokenizer=mdl_name) | |
| def answer_question(question,context): | |
| text= "{"+"'question': '"+question+"','context': '"+context+"'}" | |
| di=ast.literal_eval(text) | |
| response = my_pipeline(di) | |
| return response | |
| grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() | |
| ''' | |
| ''' | |
| from transformers import pipeline | |
| import gradio as grad | |
| mdl_name = "VietAI/envit5-translation" | |
| opus_translator = pipeline("translation", model=mdl_name) | |
| def translate(text): | |
| response = opus_translator(text) | |
| return response | |
| grad.Interface(translate, inputs=["text",], outputs="text").launch() | |
| ''' | |
| '''5.11 | |
| from transformers import GPT2LMHeadModel,GPT2Tokenizer | |
| import gradio as grad | |
| mdl = GPT2LMHeadModel.from_pretrained('gpt2') | |
| gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2') | |
| def generate(starting_text): | |
| tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt') | |
| gpt2_tensors = mdl.generate(tkn_ids) | |
| response = gpt2_tensors | |
| return response | |
| txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
| out=grad.Textbox(lines=1, label="Generated Tensors") | |
| grad.Interface(generate, inputs=txt, outputs=out).launch() | |
| ''' | |
| '''5.12 | |
| from transformers import GPT2LMHeadModel,GPT2Tokenizer | |
| import gradio as grad | |
| mdl = GPT2LMHeadModel.from_pretrained('gpt2') | |
| gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2') | |
| def generate(starting_text): | |
| tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt') | |
| gpt2_tensors = mdl.generate(tkn_ids) | |
| response="" | |
| #response = gpt2_tensors | |
| for i, x in enumerate(gpt2_tensors): | |
| response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}" | |
| return response | |
| txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
| out=grad.Textbox(lines=1, label="Generated Tensors") | |
| grad.Interface(generate, inputs=txt, outputs=out).launch() | |
| ''' | |
| #5.20 | |
| from transformers import AutoModelWithLMHead, AutoTokenizer | |
| import gradio as grad | |
| text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") | |
| mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") | |
| def text2text(context,answer): | |
| input_text = "answer: %s context: %s </s>" % (answer, context) | |
| features = text2text_tkn ([input_text], return_tensors='pt') | |
| output = mdl.generate(input_ids=features['input_ids'], | |
| attention_mask=features['attention_mask'], | |
| max_length=64) | |
| response=text2text_tkn.decode(output[0]) | |
| return response | |
| context=grad.Textbox(lines=10, label="English", placeholder="Context") | |
| ans=grad.Textbox(lines=1, label="Answer") | |
| out=grad.Textbox(lines=1, label="Genereated Question") | |
| grad.Interface(text2text, inputs=[context,ans], outputs=out).launch() | |