Spaces:
Paused
Paused
| import io | |
| import pandas as pd | |
| import streamlit as st | |
| from streamlit_drawable_canvas import st_canvas | |
| import hashlib | |
| import pypdfium2 | |
| from texify.inference import batch_inference | |
| from texify.model.model import load_model | |
| from texify.model.processor import load_processor | |
| from texify.settings import settings | |
| import subprocess | |
| import re | |
| from PIL import Image | |
| MAX_WIDTH = 1000 | |
| def replace_katex_invalid(string): | |
| # KaTeX cannot render all LaTeX, so we need to replace some things | |
| string = re.sub(r'\\tag\{.*?\}', '', string) | |
| string = re.sub(r'\\Big\{(.*?)\}|\\big\{(.*?)\}', r'\1\2', string) | |
| return string | |
| def load_model_cached(): | |
| return load_model() | |
| def load_processor_cached(): | |
| return load_processor() | |
| def infer_image(pil_image, bbox, temperature): | |
| input_img = pil_image.crop(bbox) | |
| model_output = batch_inference([input_img], model, processor, temperature=temperature) | |
| return model_output[0] | |
| def open_pdf(pdf_file): | |
| stream = io.BytesIO(pdf_file.getvalue()) | |
| return pypdfium2.PdfDocument(stream) | |
| def get_page_image(pdf_file, page_num, dpi=96): | |
| doc = open_pdf(pdf_file) | |
| renderer = doc.render( | |
| pypdfium2.PdfBitmap.to_pil, | |
| page_indices=[page_num - 1], | |
| scale=dpi / 72, | |
| ) | |
| png = list(renderer)[0] | |
| png_image = png.convert("RGB") | |
| return png_image | |
| def get_uploaded_image(in_file): | |
| return Image.open(in_file).convert("RGB") | |
| def page_count(pdf_file): | |
| doc = open_pdf(pdf_file) | |
| return len(doc) | |
| def get_canvas_hash(pil_image): | |
| return hashlib.md5(pil_image.tobytes()).hexdigest() | |
| def get_image_size(pil_image): | |
| if pil_image is None: | |
| return 800, 600 | |
| height, width = pil_image.height, pil_image.width | |
| if width > MAX_WIDTH: | |
| scale = MAX_WIDTH / width | |
| height = int(height * scale) | |
| width = MAX_WIDTH | |
| return height, width | |
| st.set_page_config(layout="wide") | |
| top_message = """### Texify | |
| After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right. | |
| If you have already cropped your image, select "OCR image" in the sidebar instead. | |
| """ | |
| st.markdown(top_message) | |
| col1, col2 = st.columns([.7, .3]) | |
| model = load_model_cached() | |
| processor = load_processor_cached() | |
| in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) | |
| if in_file is None: | |
| st.stop() | |
| filetype = in_file.type | |
| whole_image = False | |
| if "pdf" in filetype: | |
| page_count = page_count(in_file) | |
| page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count) | |
| pil_image = get_page_image(in_file, page_number) | |
| else: | |
| pil_image = get_uploaded_image(in_file) | |
| whole_image = st.sidebar.button("OCR image") | |
| temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05) | |
| canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas" | |
| with col1: | |
| # Create a canvas component | |
| canvas_result = st_canvas( | |
| fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity | |
| stroke_width=1, | |
| stroke_color="#FFAA00", | |
| background_color="#FFF", | |
| background_image=pil_image, | |
| update_streamlit=True, | |
| height=get_image_size(pil_image)[0], | |
| width=get_image_size(pil_image)[1], | |
| drawing_mode="rect", | |
| point_display_radius=0, | |
| key=canvas_hash, | |
| ) | |
| if canvas_result.json_data is not None or whole_image: | |
| objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow | |
| bbox_list = None | |
| if objects.shape[0] > 0: | |
| boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]] | |
| boxes["right"] = boxes["left"] + boxes["width"] | |
| boxes["bottom"] = boxes["top"] + boxes["height"] | |
| bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist() | |
| if whole_image: | |
| bbox_list = [(0, 0, pil_image.width, pil_image.height)] | |
| if bbox_list: | |
| with col2: | |
| inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list] | |
| for idx, inference in enumerate(reversed(inferences)): | |
| st.markdown(f"### {len(inferences) - idx}") | |
| katex_markdown = replace_katex_invalid(inference) | |
| st.markdown(katex_markdown) | |
| st.code(inference) | |
| st.divider() | |
| with col2: | |
| tips = """ | |
| ### Usage tips | |
| - Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info. | |
| - Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple. | |
| - You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is. | |
| - Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere. | |
| """ | |
| st.markdown(tips) |