Spaces:
Running
on
Zero
Running
on
Zero
solves bug in inference pipeline
Browse files- README.md +66 -35
- app.py +154 -66
- requirements.txt +4 -3
README.md
CHANGED
|
@@ -11,65 +11,96 @@ license: mit
|
|
| 11 |
short_description: Use Amazon Chronos To Predict Stock Prices
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
# Stock Price Prediction with Amazon Chronos
|
| 18 |
-
|
| 19 |
-
A neural network application that uses Amazon's Chronos model for time series forecasting to predict stock prices.
|
| 20 |
|
| 21 |
## Features
|
| 22 |
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
- User-friendly Gradio interface
|
| 27 |
-
- Free stock data using yfinance API
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
##
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
| 41 |
```bash
|
| 42 |
-
# Create and activate virtual environment
|
| 43 |
python -m venv .venv
|
| 44 |
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
pip install -r requirements.txt
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
python app.py
|
| 51 |
```
|
| 52 |
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
- Calculate confidence intervals
|
| 59 |
-
- Generate interactive visualizations
|
| 60 |
-
- Support multiple prediction horizons
|
| 61 |
|
| 62 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
2. Select the desired timeframe (1d, 1h, 15m)
|
| 66 |
-
3. Choose the number of days to predict (1-30)
|
| 67 |
-
4. Click "Make Prediction" to generate forecasts
|
| 68 |
|
| 69 |
-
|
| 70 |
-
- A plot showing historical prices and predictions
|
| 71 |
-
- Confidence intervals for the predictions
|
| 72 |
-
- A separate plot showing prediction uncertainty
|
| 73 |
|
| 74 |
## License
|
| 75 |
|
|
|
|
| 11 |
short_description: Use Amazon Chronos To Predict Stock Prices
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Stock Analysis and Prediction Demo
|
| 15 |
|
| 16 |
+
A comprehensive stock analysis and prediction tool built with Gradio, featuring multiple prediction strategies and technical analysis indicators.
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Features
|
| 19 |
|
| 20 |
+
- **Multiple Prediction Strategies**:
|
| 21 |
+
- Chronos ML-based prediction
|
| 22 |
+
- Technical analysis-based prediction
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
- **Technical Indicators**:
|
| 25 |
+
- RSI (Relative Strength Index)
|
| 26 |
+
- MACD (Moving Average Convergence Divergence)
|
| 27 |
+
- Bollinger Bands
|
| 28 |
+
- Simple Moving Averages (20 and 50-day)
|
| 29 |
|
| 30 |
+
- **Trading Signals**:
|
| 31 |
+
- Buy/Sell recommendations based on multiple indicators
|
| 32 |
+
- Overall trading signal combining all indicators
|
| 33 |
+
- Confidence intervals for predictions
|
| 34 |
|
| 35 |
+
- **Interactive Visualizations**:
|
| 36 |
+
- Price prediction with confidence intervals
|
| 37 |
+
- Technical indicators overlay
|
| 38 |
+
- Volume analysis
|
| 39 |
+
- Historical price trends
|
| 40 |
|
| 41 |
+
## Installation
|
| 42 |
|
| 43 |
+
1. Clone the repository:
|
| 44 |
+
```bash
|
| 45 |
+
git clone <repository-url>
|
| 46 |
+
cd stock-prediction
|
| 47 |
+
```
|
| 48 |
|
| 49 |
+
2. Create and activate a virtual environment:
|
| 50 |
```bash
|
|
|
|
| 51 |
python -m venv .venv
|
| 52 |
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
| 53 |
+
```
|
| 54 |
|
| 55 |
+
3. Install dependencies:
|
| 56 |
+
```bash
|
| 57 |
pip install -r requirements.txt
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Usage
|
| 61 |
|
| 62 |
+
1. Start the Gradio demo:
|
| 63 |
+
```bash
|
| 64 |
python app.py
|
| 65 |
```
|
| 66 |
|
| 67 |
+
2. Open your web browser and navigate to the URL shown in the terminal (typically http://localhost:7860)
|
| 68 |
|
| 69 |
+
3. Enter a stock symbol (e.g., AAPL, GOOGL, MSFT) and select your desired parameters:
|
| 70 |
+
- Timeframe (1d, 1h, 15m)
|
| 71 |
+
- Number of days to predict
|
| 72 |
+
- Prediction strategy (Chronos or Technical)
|
| 73 |
|
| 74 |
+
4. Click "Analyze Stock" to get predictions and trading signals
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
## Prediction Strategies
|
| 77 |
+
|
| 78 |
+
### Chronos Strategy
|
| 79 |
+
Uses Amazon's Chronos model for ML-based price prediction. This strategy:
|
| 80 |
+
- Analyzes historical price patterns
|
| 81 |
+
- Generates probabilistic forecasts
|
| 82 |
+
- Provides confidence intervals
|
| 83 |
+
|
| 84 |
+
### Technical Strategy
|
| 85 |
+
Uses traditional technical analysis indicators to generate predictions:
|
| 86 |
+
- RSI for overbought/oversold conditions
|
| 87 |
+
- MACD for trend direction
|
| 88 |
+
- Bollinger Bands for volatility
|
| 89 |
+
- Moving Averages for trend confirmation
|
| 90 |
+
|
| 91 |
+
## Trading Signals
|
| 92 |
+
|
| 93 |
+
The demo provides trading signals based on multiple technical indicators:
|
| 94 |
+
- RSI: Oversold (<30), Overbought (>70), Neutral
|
| 95 |
+
- MACD: Buy (MACD > Signal), Sell (MACD < Signal)
|
| 96 |
+
- Bollinger Bands: Buy (price < lower band), Sell (price > upper band)
|
| 97 |
+
- SMA: Buy (20-day > 50-day), Sell (20-day < 50-day)
|
| 98 |
+
|
| 99 |
+
An overall trading signal is calculated by combining all individual signals.
|
| 100 |
|
| 101 |
+
## Contributing
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
Contributions are welcome! Please feel free to submit a Pull Request.
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
## License
|
| 106 |
|
app.py
CHANGED
|
@@ -7,34 +7,39 @@ import torch
|
|
| 7 |
from chronos import BaseChronosPipeline
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
from plotly.subplots import make_subplots
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Initialize
|
| 13 |
pipeline = None
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
@spaces.GPU
|
| 16 |
def load_pipeline():
|
| 17 |
-
"""Load the Chronos model with
|
| 18 |
global pipeline
|
| 19 |
if pipeline is None:
|
| 20 |
pipeline = BaseChronosPipeline.from_pretrained(
|
| 21 |
"amazon/chronos-bolt-base",
|
| 22 |
-
device_map="
|
| 23 |
-
torch_dtype=torch.
|
| 24 |
)
|
| 25 |
pipeline.model = pipeline.model.eval()
|
| 26 |
return pipeline
|
| 27 |
|
| 28 |
-
def get_historical_data(symbol: str, timeframe: str = "1d") ->
|
| 29 |
"""
|
| 30 |
Fetch historical data using yfinance.
|
| 31 |
|
| 32 |
Args:
|
| 33 |
symbol (str): The stock symbol (e.g., 'AAPL')
|
| 34 |
timeframe (str): The timeframe for data ('1d', '1h', '15m')
|
|
|
|
| 35 |
|
| 36 |
Returns:
|
| 37 |
-
|
| 38 |
"""
|
| 39 |
try:
|
| 40 |
# Map timeframe to yfinance interval
|
|
@@ -47,83 +52,118 @@ def get_historical_data(symbol: str, timeframe: str = "1d") -> np.ndarray:
|
|
| 47 |
|
| 48 |
# Calculate date range
|
| 49 |
end_date = datetime.now()
|
| 50 |
-
|
| 51 |
-
start_date = end_date - timedelta(days=365) # 1 year of daily data
|
| 52 |
-
elif timeframe == "1h":
|
| 53 |
-
start_date = end_date - timedelta(days=30) # 30 days of hourly data
|
| 54 |
-
else: # 15m
|
| 55 |
-
start_date = end_date - timedelta(days=7) # 7 days of 15-min data
|
| 56 |
|
| 57 |
# Fetch data using yfinance
|
| 58 |
ticker = yf.Ticker(symbol)
|
| 59 |
df = ticker.history(start=start_date, end=end_date, interval=interval)
|
| 60 |
|
| 61 |
-
# Calculate
|
| 62 |
-
df['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
# Drop NaN values
|
| 65 |
df = df.dropna()
|
| 66 |
|
| 67 |
-
|
| 68 |
-
returns = df['returns'].values
|
| 69 |
-
normalized_returns = (returns - returns.mean()) / returns.std()
|
| 70 |
-
|
| 71 |
-
# Convert to the format expected by Chronos
|
| 72 |
-
return normalized_returns.reshape(-1, 1)
|
| 73 |
|
| 74 |
except Exception as e:
|
| 75 |
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
"""
|
| 80 |
-
Make prediction using
|
| 81 |
|
| 82 |
Args:
|
| 83 |
symbol (str): Stock symbol
|
| 84 |
timeframe (str): Data timeframe
|
| 85 |
prediction_days (int): Number of days to predict
|
|
|
|
| 86 |
|
| 87 |
Returns:
|
| 88 |
dict: Prediction results and visualization
|
| 89 |
"""
|
| 90 |
try:
|
| 91 |
-
# Load pipeline
|
| 92 |
-
pipe = load_pipeline()
|
| 93 |
-
|
| 94 |
# Get historical data
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# Convert to tensor and move to GPU
|
| 98 |
-
context = torch.tensor(historical_data, dtype=torch.float32).to(pipe.model.device)
|
| 99 |
-
|
| 100 |
-
# Make prediction
|
| 101 |
-
with torch.inference_mode():
|
| 102 |
-
prediction = pipe.predict(
|
| 103 |
-
context=context,
|
| 104 |
-
prediction_length=prediction_days,
|
| 105 |
-
num_samples=100
|
| 106 |
-
).detach().cpu().numpy()
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# Create prediction dates
|
| 113 |
-
last_date =
|
| 114 |
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
|
| 115 |
|
| 116 |
-
# Calculate prediction statistics
|
| 117 |
-
mean_pred = prediction.mean(axis=0)
|
| 118 |
-
std_pred = prediction.std(axis=0)
|
| 119 |
-
|
| 120 |
# Create visualization
|
| 121 |
-
fig = make_subplots(rows=
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
# Add historical
|
| 125 |
fig.add_trace(
|
| 126 |
-
go.Scatter(x=
|
| 127 |
line=dict(color='blue')),
|
| 128 |
row=1, col=1
|
| 129 |
)
|
|
@@ -149,38 +189,81 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
| 149 |
row=1, col=1
|
| 150 |
)
|
| 151 |
|
| 152 |
-
# Add
|
| 153 |
fig.add_trace(
|
| 154 |
-
go.Scatter(x=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
line=dict(color='green')),
|
| 156 |
row=2, col=1
|
| 157 |
)
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
# Update layout
|
| 160 |
fig.update_layout(
|
| 161 |
-
title=f'{symbol}
|
| 162 |
xaxis_title='Date',
|
| 163 |
yaxis_title='Price',
|
| 164 |
-
height=
|
| 165 |
showlegend=True
|
| 166 |
)
|
| 167 |
|
|
|
|
|
|
|
|
|
|
| 168 |
return {
|
| 169 |
"symbol": symbol,
|
| 170 |
"prediction": mean_pred.tolist(),
|
| 171 |
"confidence": std_pred.tolist(),
|
| 172 |
"dates": pred_dates.strftime('%Y-%m-%d').tolist(),
|
| 173 |
-
"plot": fig
|
|
|
|
| 174 |
}
|
| 175 |
|
| 176 |
except Exception as e:
|
| 177 |
raise Exception(f"Prediction error: {str(e)}")
|
| 178 |
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
def create_interface():
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
gr.Markdown("
|
|
|
|
| 184 |
|
| 185 |
with gr.Row():
|
| 186 |
with gr.Column():
|
|
@@ -197,16 +280,21 @@ def create_interface():
|
|
| 197 |
step=1,
|
| 198 |
label="Days to Predict"
|
| 199 |
)
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
with gr.Column():
|
| 203 |
-
plot = gr.Plot(label="Prediction
|
| 204 |
-
|
| 205 |
|
| 206 |
predict_btn.click(
|
| 207 |
fn=make_prediction,
|
| 208 |
-
inputs=[symbol, timeframe, prediction_days],
|
| 209 |
-
outputs=[
|
| 210 |
)
|
| 211 |
|
| 212 |
return demo
|
|
|
|
| 7 |
from chronos import BaseChronosPipeline
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
from plotly.subplots import make_subplots
|
| 10 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
from typing import Dict, List, Tuple, Optional
|
| 13 |
+
import json
|
| 14 |
|
| 15 |
+
# Initialize global variables
|
| 16 |
pipeline = None
|
| 17 |
+
scaler = MinMaxScaler(feature_range=(-1, 1))
|
| 18 |
+
scaler.fit_transform([[-1, 1]])
|
| 19 |
|
|
|
|
| 20 |
def load_pipeline():
|
| 21 |
+
"""Load the Chronos model with CPU configuration"""
|
| 22 |
global pipeline
|
| 23 |
if pipeline is None:
|
| 24 |
pipeline = BaseChronosPipeline.from_pretrained(
|
| 25 |
"amazon/chronos-bolt-base",
|
| 26 |
+
device_map="cpu",
|
| 27 |
+
torch_dtype=torch.float32
|
| 28 |
)
|
| 29 |
pipeline.model = pipeline.model.eval()
|
| 30 |
return pipeline
|
| 31 |
|
| 32 |
+
def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
|
| 33 |
"""
|
| 34 |
Fetch historical data using yfinance.
|
| 35 |
|
| 36 |
Args:
|
| 37 |
symbol (str): The stock symbol (e.g., 'AAPL')
|
| 38 |
timeframe (str): The timeframe for data ('1d', '1h', '15m')
|
| 39 |
+
lookback_days (int): Number of days to look back
|
| 40 |
|
| 41 |
Returns:
|
| 42 |
+
pd.DataFrame: Historical data with OHLCV and technical indicators
|
| 43 |
"""
|
| 44 |
try:
|
| 45 |
# Map timeframe to yfinance interval
|
|
|
|
| 52 |
|
| 53 |
# Calculate date range
|
| 54 |
end_date = datetime.now()
|
| 55 |
+
start_date = end_date - timedelta(days=lookback_days)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# Fetch data using yfinance
|
| 58 |
ticker = yf.Ticker(symbol)
|
| 59 |
df = ticker.history(start=start_date, end=end_date, interval=interval)
|
| 60 |
|
| 61 |
+
# Calculate technical indicators
|
| 62 |
+
df['SMA_20'] = df['Close'].rolling(window=20).mean()
|
| 63 |
+
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
| 64 |
+
df['RSI'] = calculate_rsi(df['Close'])
|
| 65 |
+
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
|
| 66 |
+
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
|
| 67 |
+
|
| 68 |
+
# Calculate returns and volatility
|
| 69 |
+
df['Returns'] = df['Close'].pct_change()
|
| 70 |
+
df['Volatility'] = df['Returns'].rolling(window=20).std()
|
| 71 |
|
| 72 |
# Drop NaN values
|
| 73 |
df = df.dropna()
|
| 74 |
|
| 75 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
except Exception as e:
|
| 78 |
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
|
| 79 |
|
| 80 |
+
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
| 81 |
+
"""Calculate Relative Strength Index"""
|
| 82 |
+
delta = prices.diff()
|
| 83 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
| 84 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
| 85 |
+
rs = gain / loss
|
| 86 |
+
return 100 - (100 / (1 + rs))
|
| 87 |
+
|
| 88 |
+
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
|
| 89 |
+
"""Calculate MACD and Signal line"""
|
| 90 |
+
exp1 = prices.ewm(span=fast, adjust=False).mean()
|
| 91 |
+
exp2 = prices.ewm(span=slow, adjust=False).mean()
|
| 92 |
+
macd = exp1 - exp2
|
| 93 |
+
signal_line = macd.ewm(span=signal, adjust=False).mean()
|
| 94 |
+
return macd, signal_line
|
| 95 |
+
|
| 96 |
+
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
|
| 97 |
+
"""Calculate Bollinger Bands"""
|
| 98 |
+
middle_band = prices.rolling(window=period).mean()
|
| 99 |
+
std = prices.rolling(window=period).std()
|
| 100 |
+
upper_band = middle_band + (std * std_dev)
|
| 101 |
+
lower_band = middle_band - (std * std_dev)
|
| 102 |
+
return upper_band, middle_band, lower_band
|
| 103 |
+
|
| 104 |
+
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Dict:
|
| 105 |
"""
|
| 106 |
+
Make prediction using selected strategy.
|
| 107 |
|
| 108 |
Args:
|
| 109 |
symbol (str): Stock symbol
|
| 110 |
timeframe (str): Data timeframe
|
| 111 |
prediction_days (int): Number of days to predict
|
| 112 |
+
strategy (str): Prediction strategy to use
|
| 113 |
|
| 114 |
Returns:
|
| 115 |
dict: Prediction results and visualization
|
| 116 |
"""
|
| 117 |
try:
|
|
|
|
|
|
|
|
|
|
| 118 |
# Get historical data
|
| 119 |
+
df = get_historical_data(symbol, timeframe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
if strategy == "chronos":
|
| 122 |
+
# Prepare data for Chronos
|
| 123 |
+
returns = df['Returns'].values
|
| 124 |
+
normalized_returns = (returns - returns.mean()) / returns.std()
|
| 125 |
+
context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
|
| 126 |
+
|
| 127 |
+
# Make prediction
|
| 128 |
+
pipe = load_pipeline()
|
| 129 |
+
with torch.inference_mode():
|
| 130 |
+
prediction = pipe.predict(
|
| 131 |
+
context=context,
|
| 132 |
+
prediction_length=prediction_days
|
| 133 |
+
).detach().cpu().numpy()
|
| 134 |
+
|
| 135 |
+
# Reshape prediction to get mean and std
|
| 136 |
+
mean_pred = prediction.mean(axis=0)
|
| 137 |
+
std_pred = prediction.std(axis=0)
|
| 138 |
+
|
| 139 |
+
elif strategy == "technical":
|
| 140 |
+
# Technical analysis based prediction
|
| 141 |
+
last_price = df['Close'].iloc[-1]
|
| 142 |
+
rsi = df['RSI'].iloc[-1]
|
| 143 |
+
macd = df['MACD'].iloc[-1]
|
| 144 |
+
macd_signal = df['MACD_Signal'].iloc[-1]
|
| 145 |
+
|
| 146 |
+
# Simple prediction based on technical indicators
|
| 147 |
+
trend = 1 if (rsi > 50 and macd > macd_signal) else -1
|
| 148 |
+
volatility = df['Volatility'].iloc[-1]
|
| 149 |
+
|
| 150 |
+
# Generate predictions
|
| 151 |
+
mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
|
| 152 |
+
std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
|
| 153 |
|
| 154 |
# Create prediction dates
|
| 155 |
+
last_date = df.index[-1]
|
| 156 |
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
# Create visualization
|
| 159 |
+
fig = make_subplots(rows=3, cols=1,
|
| 160 |
+
shared_xaxes=True,
|
| 161 |
+
vertical_spacing=0.05,
|
| 162 |
+
subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
|
| 163 |
|
| 164 |
+
# Add historical price
|
| 165 |
fig.add_trace(
|
| 166 |
+
go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
|
| 167 |
line=dict(color='blue')),
|
| 168 |
row=1, col=1
|
| 169 |
)
|
|
|
|
| 189 |
row=1, col=1
|
| 190 |
)
|
| 191 |
|
| 192 |
+
# Add technical indicators
|
| 193 |
fig.add_trace(
|
| 194 |
+
go.Scatter(x=df.index, y=df['RSI'], name='RSI',
|
| 195 |
+
line=dict(color='purple')),
|
| 196 |
+
row=2, col=1
|
| 197 |
+
)
|
| 198 |
+
fig.add_trace(
|
| 199 |
+
go.Scatter(x=df.index, y=df['MACD'], name='MACD',
|
| 200 |
+
line=dict(color='orange')),
|
| 201 |
+
row=2, col=1
|
| 202 |
+
)
|
| 203 |
+
fig.add_trace(
|
| 204 |
+
go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
|
| 205 |
line=dict(color='green')),
|
| 206 |
row=2, col=1
|
| 207 |
)
|
| 208 |
|
| 209 |
+
# Add volume
|
| 210 |
+
fig.add_trace(
|
| 211 |
+
go.Bar(x=df.index, y=df['Volume'], name='Volume',
|
| 212 |
+
marker_color='gray'),
|
| 213 |
+
row=3, col=1
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
# Update layout
|
| 217 |
fig.update_layout(
|
| 218 |
+
title=f'{symbol} Analysis and Prediction',
|
| 219 |
xaxis_title='Date',
|
| 220 |
yaxis_title='Price',
|
| 221 |
+
height=1000,
|
| 222 |
showlegend=True
|
| 223 |
)
|
| 224 |
|
| 225 |
+
# Calculate trading signals
|
| 226 |
+
signals = calculate_trading_signals(df)
|
| 227 |
+
|
| 228 |
return {
|
| 229 |
"symbol": symbol,
|
| 230 |
"prediction": mean_pred.tolist(),
|
| 231 |
"confidence": std_pred.tolist(),
|
| 232 |
"dates": pred_dates.strftime('%Y-%m-%d').tolist(),
|
| 233 |
+
"plot": fig,
|
| 234 |
+
"signals": signals
|
| 235 |
}
|
| 236 |
|
| 237 |
except Exception as e:
|
| 238 |
raise Exception(f"Prediction error: {str(e)}")
|
| 239 |
|
| 240 |
+
def calculate_trading_signals(df: pd.DataFrame) -> Dict:
|
| 241 |
+
"""Calculate trading signals based on technical indicators"""
|
| 242 |
+
signals = {
|
| 243 |
+
"RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
|
| 244 |
+
"MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
|
| 245 |
+
"Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
|
| 246 |
+
"SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
# Calculate overall signal
|
| 250 |
+
buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
|
| 251 |
+
sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
|
| 252 |
+
|
| 253 |
+
if buy_signals > sell_signals:
|
| 254 |
+
signals["Overall"] = "Buy"
|
| 255 |
+
elif sell_signals > buy_signals:
|
| 256 |
+
signals["Overall"] = "Sell"
|
| 257 |
+
else:
|
| 258 |
+
signals["Overall"] = "Hold"
|
| 259 |
+
|
| 260 |
+
return signals
|
| 261 |
+
|
| 262 |
def create_interface():
|
| 263 |
+
"""Create the Gradio interface"""
|
| 264 |
+
with gr.Blocks(title="Stock Analysis and Prediction") as demo:
|
| 265 |
+
gr.Markdown("# Stock Analysis and Prediction")
|
| 266 |
+
gr.Markdown("Enter a stock symbol and select parameters to get price forecasts and trading signals.")
|
| 267 |
|
| 268 |
with gr.Row():
|
| 269 |
with gr.Column():
|
|
|
|
| 280 |
step=1,
|
| 281 |
label="Days to Predict"
|
| 282 |
)
|
| 283 |
+
strategy = gr.Dropdown(
|
| 284 |
+
choices=["chronos", "technical"],
|
| 285 |
+
label="Prediction Strategy",
|
| 286 |
+
value="chronos"
|
| 287 |
+
)
|
| 288 |
+
predict_btn = gr.Button("Analyze Stock")
|
| 289 |
|
| 290 |
with gr.Column():
|
| 291 |
+
plot = gr.Plot(label="Analysis and Prediction")
|
| 292 |
+
signals = gr.JSON(label="Trading Signals")
|
| 293 |
|
| 294 |
predict_btn.click(
|
| 295 |
fn=make_prediction,
|
| 296 |
+
inputs=[symbol, timeframe, prediction_days, strategy],
|
| 297 |
+
outputs=[signals, plot]
|
| 298 |
)
|
| 299 |
|
| 300 |
return demo
|
requirements.txt
CHANGED
|
@@ -67,7 +67,7 @@ certifi
|
|
| 67 |
patsy
|
| 68 |
regex
|
| 69 |
cachetools>=5.3.0
|
| 70 |
-
python-dateutil
|
| 71 |
cmaes
|
| 72 |
alembic
|
| 73 |
colorlog
|
|
@@ -104,7 +104,7 @@ gunicorn
|
|
| 104 |
uvicorn
|
| 105 |
# git+https://github.com/amazon-science/chronos-forecasting.git
|
| 106 |
chronos-forecasting
|
| 107 |
-
scikit-learn
|
| 108 |
|
| 109 |
python-binance
|
| 110 |
typer
|
|
@@ -116,4 +116,5 @@ numpy>=1.24.0
|
|
| 116 |
torch>=2.0.0
|
| 117 |
yfinance>=0.2.0
|
| 118 |
plotly>=5.0.0
|
| 119 |
-
chronos>=0.1.0
|
|
|
|
|
|
| 67 |
patsy
|
| 68 |
regex
|
| 69 |
cachetools>=5.3.0
|
| 70 |
+
python-dateutil>=2.8.2
|
| 71 |
cmaes
|
| 72 |
alembic
|
| 73 |
colorlog
|
|
|
|
| 104 |
uvicorn
|
| 105 |
# git+https://github.com/amazon-science/chronos-forecasting.git
|
| 106 |
chronos-forecasting
|
| 107 |
+
scikit-learn>=1.0.0
|
| 108 |
|
| 109 |
python-binance
|
| 110 |
typer
|
|
|
|
| 116 |
torch>=2.0.0
|
| 117 |
yfinance>=0.2.0
|
| 118 |
plotly>=5.0.0
|
| 119 |
+
chronos>=0.1.0
|
| 120 |
+
chronos-pytorch>=0.1.0
|