Spaces:
Build error
Build error
Revert "chroma langchain fix 1"
Browse filesThis reverts commit 70c5bc93401cd8a8a030ca08155fcfeb5906751a.
- app.py +16 -35
- requirements.txt +0 -1
app.py
CHANGED
|
@@ -113,13 +113,9 @@ from langchain_community.document_loaders import UnstructuredFileLoader
|
|
| 113 |
from chromadb import Documents, EmbeddingFunction, Embeddings
|
| 114 |
from chromadb.config import Settings
|
| 115 |
from chromadb import HttpClient
|
| 116 |
-
from langchain_chroma import Chroma
|
| 117 |
from utils import load_env_variables, parse_and_route
|
| 118 |
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name
|
| 119 |
-
from langchain_core.embeddings import Embeddings
|
| 120 |
-
from chromadb.api.types import EmbeddingFunction, Documents
|
| 121 |
|
| 122 |
-
|
| 123 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
| 124 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 125 |
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
|
@@ -182,23 +178,6 @@ class EmbeddingGenerator:
|
|
| 182 |
self.clear_cuda_cache()
|
| 183 |
return embeddings_list
|
| 184 |
|
| 185 |
-
class ChromaEmbeddingsAdapter(Embeddings):
|
| 186 |
-
def __init__(self, ef: EmbeddingFunction):
|
| 187 |
-
self.ef = ef
|
| 188 |
-
|
| 189 |
-
def embed_documents(self, texts):
|
| 190 |
-
return self.ef(texts)
|
| 191 |
-
|
| 192 |
-
def embed_query(self, query):
|
| 193 |
-
return self.ef([query])[0]
|
| 194 |
-
|
| 195 |
-
class LangChainEmbeddingAdapter(EmbeddingFunction[Documents]):
|
| 196 |
-
def __init__(self, ef: Embeddings):
|
| 197 |
-
self.ef = ef
|
| 198 |
-
|
| 199 |
-
def __call__(self, input: Documents) -> Embeddings:
|
| 200 |
-
return self.ef.embed_documents(input)
|
| 201 |
-
|
| 202 |
class MyEmbeddingFunction(EmbeddingFunction):
|
| 203 |
def __init__(self, embedding_generator: EmbeddingGenerator):
|
| 204 |
self.embedding_generator = embedding_generator
|
|
@@ -214,22 +193,25 @@ def load_documents(file_path: str, mode: str = "elements"):
|
|
| 214 |
return [doc.page_content for doc in docs]
|
| 215 |
|
| 216 |
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
| 217 |
-
client =
|
| 218 |
-
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
def add_documents_to_chroma(client, documents: list, embedding_function: MyEmbeddingFunction):
|
| 221 |
for doc in documents:
|
| 222 |
-
|
| 223 |
|
| 224 |
-
def query_chroma(client, query_text: str):
|
| 225 |
-
|
|
|
|
| 226 |
return result_docs
|
| 227 |
-
|
| 228 |
# Initialize clients
|
| 229 |
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
| 230 |
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
|
| 231 |
embedding_function = MyEmbeddingFunction(embedding_generator=embedding_generator)
|
| 232 |
-
chroma_client = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
|
| 233 |
|
| 234 |
def respond(
|
| 235 |
message,
|
|
@@ -261,15 +243,14 @@ def respond(
|
|
| 261 |
|
| 262 |
def upload_documents(files):
|
| 263 |
for file in files:
|
| 264 |
-
loader =
|
| 265 |
-
documents = loader.
|
| 266 |
-
|
| 267 |
return "Documents uploaded and processed successfully!"
|
| 268 |
|
| 269 |
-
|
| 270 |
def query_documents(query):
|
| 271 |
-
results =
|
| 272 |
-
return "\n\n".join([result.
|
| 273 |
|
| 274 |
with gr.Blocks() as demo:
|
| 275 |
with gr.Tab("Upload Documents"):
|
|
|
|
| 113 |
from chromadb import Documents, EmbeddingFunction, Embeddings
|
| 114 |
from chromadb.config import Settings
|
| 115 |
from chromadb import HttpClient
|
|
|
|
| 116 |
from utils import load_env_variables, parse_and_route
|
| 117 |
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name
|
|
|
|
|
|
|
| 118 |
|
|
|
|
| 119 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
| 120 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 121 |
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
|
|
|
| 178 |
self.clear_cuda_cache()
|
| 179 |
return embeddings_list
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
class MyEmbeddingFunction(EmbeddingFunction):
|
| 182 |
def __init__(self, embedding_generator: EmbeddingGenerator):
|
| 183 |
self.embedding_generator = embedding_generator
|
|
|
|
| 193 |
return [doc.page_content for doc in docs]
|
| 194 |
|
| 195 |
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
| 196 |
+
client = chromadb.HttpClient(host='localhost', port=8000, settings=Settings(allow_reset=True, anonymized_telemetry=False))
|
| 197 |
+
client.reset() # resets the database
|
| 198 |
+
collection = client.create_collection(collection_name)
|
| 199 |
+
return client, collection
|
| 200 |
|
| 201 |
+
def add_documents_to_chroma(client, collection, documents: list, embedding_function: MyEmbeddingFunction):
|
| 202 |
for doc in documents:
|
| 203 |
+
collection.add(ids=[str(uuid.uuid1())], documents=[doc], embeddings=embedding_function([doc]))
|
| 204 |
|
| 205 |
+
def query_chroma(client, collection_name: str, query_text: str, embedding_function: MyEmbeddingFunction):
|
| 206 |
+
db = Chroma(client=client, collection_name=collection_name, embedding_function=embedding_function)
|
| 207 |
+
result_docs = db.similarity_search(query_text)
|
| 208 |
return result_docs
|
| 209 |
+
|
| 210 |
# Initialize clients
|
| 211 |
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
| 212 |
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
|
| 213 |
embedding_function = MyEmbeddingFunction(embedding_generator=embedding_generator)
|
| 214 |
+
chroma_client, chroma_collection = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
|
| 215 |
|
| 216 |
def respond(
|
| 217 |
message,
|
|
|
|
| 243 |
|
| 244 |
def upload_documents(files):
|
| 245 |
for file in files:
|
| 246 |
+
loader = DocumentLoader(file.name)
|
| 247 |
+
documents = loader.load_documents()
|
| 248 |
+
chroma_manager.add_documents(documents)
|
| 249 |
return "Documents uploaded and processed successfully!"
|
| 250 |
|
|
|
|
| 251 |
def query_documents(query):
|
| 252 |
+
results = chroma_manager.query(query)
|
| 253 |
+
return "\n\n".join([result.content for result in results])
|
| 254 |
|
| 255 |
with gr.Blocks() as demo:
|
| 256 |
with gr.Tab("Upload Documents"):
|
requirements.txt
CHANGED
|
@@ -7,7 +7,6 @@ openai
|
|
| 7 |
python-dotenv
|
| 8 |
chromadb
|
| 9 |
langchain-community
|
| 10 |
-
langchain-chroma
|
| 11 |
unstructured[all-docs]
|
| 12 |
libmagic
|
| 13 |
# poppler
|
|
|
|
| 7 |
python-dotenv
|
| 8 |
chromadb
|
| 9 |
langchain-community
|
|
|
|
| 10 |
unstructured[all-docs]
|
| 11 |
libmagic
|
| 12 |
# poppler
|