Spaces:
Running
Running
𫦠BitNet on CPU (Native 1-bit LLM) (#7)
Browse files- 𫦠BitNet on CPU (Native 1-bit LLM) (ff224fc74fb891f56f3d459fb4395ce5f2198d35)
Co-authored-by: PayPeer, Inc. <[email protected]>
app.py
CHANGED
|
@@ -1,29 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
from bitnet.configuration_bitnet import BitNetConfig
|
| 7 |
-
from bitnet.modeling_bitnet import BitNetForCausalLM
|
| 8 |
-
from bitnet.tokenization_bitnet import BitNetTokenizer
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
_tokenizer = None
|
| 13 |
|
| 14 |
def load_model():
|
| 15 |
-
global
|
| 16 |
-
if
|
| 17 |
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
_model = BitNetForCausalLM.from_pretrained(
|
| 22 |
model_id,
|
| 23 |
config=config,
|
| 24 |
torch_dtype=torch.bfloat16
|
| 25 |
)
|
| 26 |
-
return
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def manage_history(history):
|
| 29 |
# Limit to 3 turns (each turn is user + assistant = 2 messages)
|
|
@@ -39,6 +39,8 @@ def manage_history(history):
|
|
| 39 |
|
| 40 |
return history
|
| 41 |
|
|
|
|
|
|
|
| 42 |
def generate_response(user_input, system_prompt, max_new_tokens, temperature, top_p, top_k, history):
|
| 43 |
model, tokenizer = load_model()
|
| 44 |
|
|
@@ -50,7 +52,7 @@ def generate_response(user_input, system_prompt, max_new_tokens, temperature, to
|
|
| 50 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 51 |
chat_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 52 |
|
| 53 |
-
# Generate
|
| 54 |
chat_outputs = model.generate(
|
| 55 |
**chat_input,
|
| 56 |
max_new_tokens=max_new_tokens,
|
|
@@ -60,19 +62,20 @@ def generate_response(user_input, system_prompt, max_new_tokens, temperature, to
|
|
| 60 |
do_sample=True
|
| 61 |
)
|
| 62 |
|
| 63 |
-
# Decode
|
| 64 |
response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True)
|
| 65 |
|
| 66 |
-
# Update
|
| 67 |
history.append({"role": "user", "content": user_input})
|
| 68 |
history.append({"role": "assistant", "content": response})
|
| 69 |
|
| 70 |
-
# Manage
|
| 71 |
history = manage_history(history)
|
| 72 |
|
| 73 |
return history, history
|
| 74 |
|
| 75 |
-
#
|
|
|
|
| 76 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 77 |
gr.Markdown("# BitNet b1.58 2B4T Demo")
|
| 78 |
|
|
@@ -80,7 +83,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 80 |
with gr.Column():
|
| 81 |
gr.Markdown("""
|
| 82 |
## About BitNet b1.58 2B4T
|
| 83 |
-
BitNet b1.58 2B4T is the first open-source, native 1-bit Large Language Model with 2 billion parameters,
|
|
|
|
|
|
|
| 84 |
- Transformer-based architecture with BitLinear layers
|
| 85 |
- Native 1.58-bit weights and 8-bit activations
|
| 86 |
- Maximum context length of 4096 tokens
|
|
@@ -90,7 +95,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 90 |
with gr.Column():
|
| 91 |
gr.Markdown("""
|
| 92 |
## About Tonic AI
|
| 93 |
-
Tonic AI is a vibrant community of AI enthusiasts and developers always building cool demos and pushing
|
|
|
|
|
|
|
| 94 |
""")
|
| 95 |
|
| 96 |
with gr.Row():
|
|
@@ -152,8 +159,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 152 |
],
|
| 153 |
outputs=[chatbot, chat_history]
|
| 154 |
)
|
|
|
|
|
|
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
| 157 |
-
# Preload model to avoid threading issues
|
| 158 |
load_model()
|
| 159 |
demo.launch(ssr_mode=False, share=True)
|
|
|
|
| 1 |
+
# π€β‘ ββ [ I M P O R T S ]
|
| 2 |
+
|
| 3 |
+
import accelerate
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
| 7 |
|
| 8 |
+
# π§ π§ ββ [ M O D E L ]
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
microsoft_model = None
|
| 11 |
+
microsoft_tokenizer = None
|
|
|
|
| 12 |
|
| 13 |
def load_model():
|
| 14 |
+
global microsoft_model, microsoft_tokenizer
|
| 15 |
+
if microsoft_model is None or microsoft_tokenizer is None:
|
| 16 |
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
| 17 |
+
microsoft_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 18 |
+
config = AutoConfig.from_pretrained(model_id)
|
| 19 |
+
microsoft_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 20 |
model_id,
|
| 21 |
config=config,
|
| 22 |
torch_dtype=torch.bfloat16
|
| 23 |
)
|
| 24 |
+
return microsoft_model, microsoft_tokenizer
|
| 25 |
+
|
| 26 |
+
# ποΈπ°οΈ ββ [ C O N V E R S A T I O N - H I S T O R Y ]
|
| 27 |
|
| 28 |
def manage_history(history):
|
| 29 |
# Limit to 3 turns (each turn is user + assistant = 2 messages)
|
|
|
|
| 39 |
|
| 40 |
return history
|
| 41 |
|
| 42 |
+
# π¬β¨ ββ [ G E N E R A T E - R E S P O N S E ]
|
| 43 |
+
|
| 44 |
def generate_response(user_input, system_prompt, max_new_tokens, temperature, top_p, top_k, history):
|
| 45 |
model, tokenizer = load_model()
|
| 46 |
|
|
|
|
| 52 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 53 |
chat_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 54 |
|
| 55 |
+
# Generate Response
|
| 56 |
chat_outputs = model.generate(
|
| 57 |
**chat_input,
|
| 58 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 62 |
do_sample=True
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# Decode Response
|
| 66 |
response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True)
|
| 67 |
|
| 68 |
+
# Update History
|
| 69 |
history.append({"role": "user", "content": user_input})
|
| 70 |
history.append({"role": "assistant", "content": response})
|
| 71 |
|
| 72 |
+
# Manage History Limits
|
| 73 |
history = manage_history(history)
|
| 74 |
|
| 75 |
return history, history
|
| 76 |
|
| 77 |
+
# ποΈπ₯οΈ ββ [ G R A D I O - I N T E R F A C E ]
|
| 78 |
+
|
| 79 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 80 |
gr.Markdown("# BitNet b1.58 2B4T Demo")
|
| 81 |
|
|
|
|
| 83 |
with gr.Column():
|
| 84 |
gr.Markdown("""
|
| 85 |
## About BitNet b1.58 2B4T
|
| 86 |
+
BitNet b1.58 2B4T is the first open-source, native 1-bit Large Language Model with 2 billion parameters,
|
| 87 |
+
developed by Microsoft Research. Trained on 4 trillion tokens, it matches the performance of full-precision
|
| 88 |
+
models while offering significant efficiency gains in memory, energy, and latency. Features include:
|
| 89 |
- Transformer-based architecture with BitLinear layers
|
| 90 |
- Native 1.58-bit weights and 8-bit activations
|
| 91 |
- Maximum context length of 4096 tokens
|
|
|
|
| 95 |
with gr.Column():
|
| 96 |
gr.Markdown("""
|
| 97 |
## About Tonic AI
|
| 98 |
+
Tonic AI is a vibrant community of AI enthusiasts and developers always building cool demos and pushing
|
| 99 |
+
the boundaries of what's possible with AI. We're passionate about creating innovative, accessible, and
|
| 100 |
+
engaging AI experiences for everyone. Join us in exploring the future of AI!
|
| 101 |
""")
|
| 102 |
|
| 103 |
with gr.Row():
|
|
|
|
| 159 |
],
|
| 160 |
outputs=[chatbot, chat_history]
|
| 161 |
)
|
| 162 |
+
|
| 163 |
+
# ποΏ½οΏ½οΏ½οΏ½ ββ [ M A I N ]
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
|
|
|
| 166 |
load_model()
|
| 167 |
demo.launch(ssr_mode=False, share=True)
|