Update app.py
Browse files
app.py
CHANGED
|
@@ -1,224 +1,368 @@
|
|
| 1 |
# app.py ──────────────────────────────────────────────────────────────
|
| 2 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 4 |
from huggingface_hub import login
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor,
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# 0) Login + Device ---------------------------------------------------
|
| 9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 10 |
if HF_TOKEN:
|
|
|
|
| 11 |
login(HF_TOKEN)
|
| 12 |
|
| 13 |
-
|
| 14 |
-
#torch.backends.cuda.enable_flash_sdp(False) # PyTorch‑2.2‑Bug
|
| 15 |
|
| 16 |
# 1) Konstanten -------------------------------------------------------
|
| 17 |
-
REPO
|
| 18 |
-
CHUNK_TOKENS
|
| 19 |
-
START_TOKEN
|
| 20 |
-
NEW_BLOCK
|
| 21 |
-
EOS_TOKEN
|
| 22 |
-
AUDIO_BASE
|
| 23 |
-
AUDIO_SPAN
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
class AudioMask(LogitsProcessor):
|
| 28 |
-
def __init__(self, audio_ids: torch.Tensor):
|
| 29 |
super().__init__()
|
|
|
|
| 30 |
self.allow = torch.cat([
|
| 31 |
-
torch.tensor([
|
| 32 |
audio_ids
|
| 33 |
-
])
|
| 34 |
-
self.eos
|
| 35 |
-
self.
|
| 36 |
-
self.
|
| 37 |
|
| 38 |
-
def __call__(self, input_ids, scores):
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
mask = torch.full_like(scores, float("-inf"))
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
return scores + mask
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
@app.on_event("startup")
|
| 52 |
-
def
|
| 53 |
-
global tok, model, snac, masker
|
|
|
|
|
|
|
| 54 |
print("⏳ Lade Modelle …", flush=True)
|
| 55 |
|
| 56 |
-
tok
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
REPO,
|
| 60 |
-
device_map={"": 0} if device == "cuda" else None,
|
| 61 |
-
torch_dtype=torch.bfloat16 if device == "cuda" else
|
| 62 |
-
low_cpu_mem_usage=True,
|
| 63 |
)
|
| 64 |
-
model.config.pad_token_id = model.config.eos_token_id
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
@app.websocket("/ws/tts")
|
| 95 |
async def tts(ws: WebSocket):
|
| 96 |
await ws.accept()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
try:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
ids, attn = build_prompt(text, voice)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
cache_position=current_cache_position, # Will be None after first iteration
|
| 134 |
-
max_new_tokens=CHUNK_TOKENS,
|
| 135 |
-
logits_processor=[masker],
|
| 136 |
-
do_sample=True, temperature=0.7, top_p=0.95,
|
| 137 |
-
use_cache=True,
|
| 138 |
-
return_dict_in_generate=True,
|
| 139 |
-
return_legacy_cache=False # Ensures DynamicCache
|
| 140 |
-
)
|
| 141 |
-
except Exception as e:
|
| 142 |
-
print(f"❌ Error during model.generate: {e}")
|
| 143 |
-
import traceback
|
| 144 |
-
traceback.print_exc()
|
| 145 |
-
break # Exit loop on generation error
|
| 146 |
-
|
| 147 |
-
# --- Process Output ---
|
| 148 |
-
# Get the full sequence generated *up to this point*
|
| 149 |
-
full_sequence_now = gen.sequences # Get the sequence tensor
|
| 150 |
-
|
| 151 |
-
# Determine the sequence length *before* this generation call using the cache
|
| 152 |
-
# If past is None, the previous length was the initial prompt length
|
| 153 |
-
prev_seq_len = past.get_seq_length() if past is not None else ids.shape
|
| 154 |
-
|
| 155 |
-
# The new tokens are those generated *in this call*
|
| 156 |
-
# These appear *after* the previously cached sequence length
|
| 157 |
-
# Ensure slicing is correct even if no new tokens are generated
|
| 158 |
-
if full_sequence_now.shape > prev_seq_len:
|
| 159 |
-
new_token_ids = full_sequence_now[prev_seq_len:]
|
| 160 |
-
new = new_token_ids.tolist() # Convert tensor to list
|
| 161 |
-
else:
|
| 162 |
-
new = [] # No new tokens generated
|
| 163 |
-
|
| 164 |
-
if not new: # If no new tokens were generated, stop
|
| 165 |
-
print("No new tokens generated, stopping.")
|
| 166 |
-
break
|
| 167 |
-
|
| 168 |
-
# Update past_key_values for the *next* iteration
|
| 169 |
-
past = gen.past_key_values # Update the cache state
|
| 170 |
-
|
| 171 |
-
# Get the very last token generated in *this* call for the *next* input
|
| 172 |
-
last_tok = new[-1]
|
| 173 |
-
|
| 174 |
-
# ----- Token‑Handling (process the 'new' list) -----
|
| 175 |
-
eos_found = False
|
| 176 |
-
for t in new:
|
| 177 |
-
if t == EOS_TOKEN:
|
| 178 |
-
print("EOS token encountered.")
|
| 179 |
-
eos_found = True
|
| 180 |
-
break # Stop processing tokens in this chunk
|
| 181 |
-
if t == NEW_BLOCK:
|
| 182 |
-
buf.clear()
|
| 183 |
-
continue
|
| 184 |
-
# Check if token is within the expected audio range
|
| 185 |
-
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
|
| 186 |
-
buf.append(t - AUDIO_BASE)
|
| 187 |
-
else:
|
| 188 |
-
# Log unexpected tokens if necessary
|
| 189 |
-
# print(f"Warning: Generated token {t} outside expected audio range.")
|
| 190 |
-
pass # Ignore unexpected tokens for now
|
| 191 |
-
|
| 192 |
-
if len(buf) == 7:
|
| 193 |
-
await ws.send_bytes(decode_block(buf))
|
| 194 |
-
buf.clear()
|
| 195 |
-
# Allow EOS only after the first full block is sent
|
| 196 |
-
if not masker.sent_blocks:
|
| 197 |
-
masker.sent_blocks = 1
|
| 198 |
-
|
| 199 |
-
if eos_found:
|
| 200 |
-
# Handle any remaining buffer content if needed (e.g., log incomplete block)
|
| 201 |
-
if len(buf) > 0:
|
| 202 |
-
print(f"Warning: Incomplete audio block at EOS: {len(buf)} tokens. Discarding.")
|
| 203 |
-
buf.clear()
|
| 204 |
-
break # Exit the while loop
|
| 205 |
-
|
| 206 |
-
except (StopIteration, WebSocketDisconnect):
|
| 207 |
-
pass
|
| 208 |
except Exception as e:
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
finally:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
if ws.client_state.name != "DISCONNECTED":
|
| 216 |
try:
|
| 217 |
-
await ws.close()
|
| 218 |
-
except RuntimeError:
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
#
|
| 222 |
if __name__ == "__main__":
|
| 223 |
-
import uvicorn
|
| 224 |
-
|
|
|
|
|
|
|
|
|
| 1 |
# app.py ──────────────────────────────────────────────────────────────
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import torch
|
| 5 |
+
import asyncio
|
| 6 |
+
import traceback # Import traceback for better error logging
|
| 7 |
+
|
| 8 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 9 |
from huggingface_hub import login
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, StoppingCriteria, StoppingCriteriaList
|
| 11 |
+
# Import BaseStreamer for the interface
|
| 12 |
+
from transformers.generation.streamers import BaseStreamer
|
| 13 |
+
from snac import SNAC # Ensure you have 'pip install snac'
|
| 14 |
+
|
| 15 |
+
# --- Globals (populated in load_models) ---
|
| 16 |
+
tok = None
|
| 17 |
+
model = None
|
| 18 |
+
snac = None
|
| 19 |
+
masker = None
|
| 20 |
+
stopping_criteria = None
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
# 0) Login + Device ---------------------------------------------------
|
| 24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 25 |
if HF_TOKEN:
|
| 26 |
+
print("🔑 Logging in to Hugging Face Hub...")
|
| 27 |
login(HF_TOKEN)
|
| 28 |
|
| 29 |
+
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorch‑2.2‑Bug
|
|
|
|
| 30 |
|
| 31 |
# 1) Konstanten -------------------------------------------------------
|
| 32 |
+
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
| 33 |
+
# CHUNK_TOKENS = 50 # Not directly used by us with the streamer approach
|
| 34 |
+
START_TOKEN = 128259
|
| 35 |
+
NEW_BLOCK = 128257
|
| 36 |
+
EOS_TOKEN = 128258
|
| 37 |
+
AUDIO_BASE = 128266
|
| 38 |
+
AUDIO_SPAN = 4096 * 7 # 28672 Codes
|
| 39 |
+
# Create AUDIO_IDS on the correct device later in load_models
|
| 40 |
+
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
|
| 41 |
+
|
| 42 |
+
# 2) Logit‑Mask -------------------------------------------------------
|
| 43 |
class AudioMask(LogitsProcessor):
|
| 44 |
+
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
|
| 45 |
super().__init__()
|
| 46 |
+
# Allow NEW_BLOCK and all valid audio tokens initially
|
| 47 |
self.allow = torch.cat([
|
| 48 |
+
torch.tensor([new_block_token_id], device=audio_ids.device), # Add NEW_BLOCK token ID
|
| 49 |
audio_ids
|
| 50 |
+
], dim=0)
|
| 51 |
+
self.eos = torch.tensor([eos_token_id], device=audio_ids.device) # Store EOS token ID as tensor
|
| 52 |
+
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0) # Precompute combined tensor
|
| 53 |
+
self.sent_blocks = 0 # State: Number of audio blocks sent
|
| 54 |
|
| 55 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
| 56 |
+
# Determine which tokens are allowed based on whether blocks have been sent
|
| 57 |
+
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
|
| 58 |
+
|
| 59 |
+
# Create a mask initialized to negative infinity
|
| 60 |
mask = torch.full_like(scores, float("-inf"))
|
| 61 |
+
# Set allowed token scores to 0 (effectively allowing them)
|
| 62 |
+
mask[:, current_allow] = 0
|
| 63 |
+
# Apply the mask to the scores
|
| 64 |
return scores + mask
|
| 65 |
|
| 66 |
+
def reset(self):
|
| 67 |
+
"""Resets the state for a new generation request."""
|
| 68 |
+
self.sent_blocks = 0
|
| 69 |
|
| 70 |
+
# 3) StoppingCriteria für EOS ---------------------------------------
|
| 71 |
+
# generate() needs explicit stopping criteria when using a streamer
|
| 72 |
+
class EosStoppingCriteria(StoppingCriteria):
|
| 73 |
+
def __init__(self, eos_token_id: int):
|
| 74 |
+
self.eos_token_id = eos_token_id
|
| 75 |
+
|
| 76 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 77 |
+
# Check if the *last* generated token is the EOS token
|
| 78 |
+
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
|
| 79 |
+
# print("StoppingCriteria: EOS detected.")
|
| 80 |
+
return True
|
| 81 |
+
return False
|
| 82 |
+
|
| 83 |
+
# 4) Benutzerdefinierter AudioStreamer -------------------------------
|
| 84 |
+
class AudioStreamer(BaseStreamer):
|
| 85 |
+
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop):
|
| 86 |
+
self.ws = ws
|
| 87 |
+
self.snac = snac_decoder
|
| 88 |
+
self.masker = audio_mask # Reference to the mask to update sent_blocks
|
| 89 |
+
self.loop = loop # Event loop of the main thread for run_coroutine_threadsafe
|
| 90 |
+
self.device = snac_decoder.device # Get device from the decoder
|
| 91 |
+
self.buf: list[int] = [] # Buffer for audio token values (AUDIO_BASE subtracted)
|
| 92 |
+
self.tasks = set() # Keep track of pending send tasks
|
| 93 |
+
|
| 94 |
+
def _decode_block(self, block7: list[int]) -> bytes:
|
| 95 |
+
"""
|
| 96 |
+
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
|
| 97 |
+
NOTE: The mapping from the 7 tokens to the 3 SNAC codebooks (l1, l2, l3)
|
| 98 |
+
is based on a common interleaving hypothesis. Verify if model docs specify otherwise.
|
| 99 |
+
"""
|
| 100 |
+
if len(block7) != 7:
|
| 101 |
+
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
|
| 102 |
+
return b"" # Return empty bytes if block is incomplete
|
| 103 |
+
|
| 104 |
+
# --- Hypothesis: Interleaving mapping ---
|
| 105 |
+
# Assumes 7 tokens map to 3 codebooks like this:
|
| 106 |
+
# Codebook 1 (l1) uses tokens at indices 0, 3, 6
|
| 107 |
+
# Codebook 2 (l2) uses tokens at indices 1, 4
|
| 108 |
+
# Codebook 3 (l3) uses tokens at indices 2, 5
|
| 109 |
+
try:
|
| 110 |
+
l1 = [block7[0], block7[3], block7[6]]
|
| 111 |
+
l2 = [block7[1], block7[4]]
|
| 112 |
+
l3 = [block7[2], block7[5]]
|
| 113 |
+
except IndexError:
|
| 114 |
+
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
|
| 115 |
+
return b""
|
| 116 |
+
|
| 117 |
+
# Convert lists to tensors on the correct device
|
| 118 |
+
codes_l1 = torch.tensor(l1, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 119 |
+
codes_l2 = torch.tensor(l2, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 120 |
+
codes_l3 = torch.tensor(l3, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 121 |
+
codes = [codes_l1, codes_l2, codes_l3] # List of tensors for SNAC
|
| 122 |
+
|
| 123 |
+
# Decode using SNAC
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
audio = self.snac.decode(codes)[0] # Decode expects list of tensors, result might have batch dim
|
| 126 |
+
|
| 127 |
+
# Squeeze, move to CPU, convert to numpy
|
| 128 |
+
audio_np = audio.squeeze().detach().cpu().numpy()
|
| 129 |
+
|
| 130 |
+
# Convert to 16-bit PCM bytes
|
| 131 |
+
audio_bytes = (audio_np * 32767).astype("int16").tobytes()
|
| 132 |
+
return audio_bytes
|
| 133 |
+
|
| 134 |
+
async def _send_audio_bytes(self, data: bytes):
|
| 135 |
+
"""Coroutine to send bytes over WebSocket."""
|
| 136 |
+
if not data: # Don't send empty bytes
|
| 137 |
+
return
|
| 138 |
+
try:
|
| 139 |
+
await self.ws.send_bytes(data)
|
| 140 |
+
# print(f"Streamer: Sent {len(data)} audio bytes.")
|
| 141 |
+
except WebSocketDisconnect:
|
| 142 |
+
print("Streamer: WebSocket disconnected during send.")
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f"Streamer: Error sending bytes: {e}")
|
| 145 |
+
|
| 146 |
+
def put(self, value: torch.LongTensor):
|
| 147 |
+
"""
|
| 148 |
+
Receives new token IDs (Tensor) from generate() (runs in worker thread).
|
| 149 |
+
Processes tokens, decodes full blocks, and schedules sending via run_coroutine_threadsafe.
|
| 150 |
+
"""
|
| 151 |
+
# Ensure value is on CPU and flatten to a list of ints
|
| 152 |
+
if value.numel() == 0:
|
| 153 |
+
return
|
| 154 |
+
new_token_ids = value.squeeze().tolist()
|
| 155 |
+
if isinstance(new_token_ids, int): # Handle single token case
|
| 156 |
+
new_token_ids = [new_token_ids]
|
| 157 |
+
|
| 158 |
+
for t in new_token_ids:
|
| 159 |
+
if t == EOS_TOKEN:
|
| 160 |
+
# print("Streamer: EOS token encountered.")
|
| 161 |
+
# EOS is handled by StoppingCriteria, no action needed here except maybe logging.
|
| 162 |
+
break # Stop processing this batch if EOS is found
|
| 163 |
+
|
| 164 |
+
if t == NEW_BLOCK:
|
| 165 |
+
# print("Streamer: NEW_BLOCK token encountered.")
|
| 166 |
+
# NEW_BLOCK indicates the start of audio, might reset buffer if needed
|
| 167 |
+
self.buf.clear()
|
| 168 |
+
continue # Move to the next token
|
| 169 |
+
|
| 170 |
+
# Check if token is within the expected audio range
|
| 171 |
+
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
|
| 172 |
+
self.buf.append(t - AUDIO_BASE) # Store value relative to base
|
| 173 |
+
else:
|
| 174 |
+
# Log unexpected tokens (like START_TOKEN or others if generation goes wrong)
|
| 175 |
+
# print(f"Streamer Warning: Ignoring unexpected token {t}")
|
| 176 |
+
pass # Ignore tokens outside the audio range
|
| 177 |
+
|
| 178 |
+
# If buffer has 7 tokens, decode and send
|
| 179 |
+
if len(self.buf) == 7:
|
| 180 |
+
audio_bytes = self._decode_block(self.buf)
|
| 181 |
+
self.buf.clear() # Clear buffer after processing
|
| 182 |
+
|
| 183 |
+
if audio_bytes: # Only send if decoding was successful
|
| 184 |
+
# Schedule the async send function to run on the main event loop
|
| 185 |
+
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
|
| 186 |
+
self.tasks.add(future)
|
| 187 |
+
# Optional: Remove completed tasks to prevent memory leak if generation is very long
|
| 188 |
+
future.add_done_callback(self.tasks.discard)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# Allow EOS only after the first full block has been processed and scheduled for sending
|
| 192 |
+
if self.masker.sent_blocks == 0:
|
| 193 |
+
# print("Streamer: First audio block processed, allowing EOS.")
|
| 194 |
+
self.masker.sent_blocks = 1 # Update state in the mask
|
| 195 |
+
|
| 196 |
+
# Note: No need to explicitly wait for tasks here. put() should return quickly.
|
| 197 |
+
|
| 198 |
+
def end(self):
|
| 199 |
+
"""Called by generate() when generation finishes."""
|
| 200 |
+
# Handle any remaining tokens in the buffer (optional, here we discard them)
|
| 201 |
+
if len(self.buf) > 0:
|
| 202 |
+
print(f"Streamer: End of generation with incomplete block ({len(self.buf)} tokens). Discarding.")
|
| 203 |
+
self.buf.clear()
|
| 204 |
+
|
| 205 |
+
# Optional: Wait briefly for any outstanding send tasks to complete?
|
| 206 |
+
# This is tricky because end() is sync. A robust solution might involve
|
| 207 |
+
# signaling the WebSocket handler to wait before closing.
|
| 208 |
+
# For simplicity, we rely on FastAPI/Uvicorn's graceful shutdown handling.
|
| 209 |
+
# print(f"Streamer: Generation finished. Pending send tasks: {len(self.tasks)}")
|
| 210 |
+
pass
|
| 211 |
+
|
| 212 |
+
# 5) FastAPI App ------------------------------------------------------
|
| 213 |
+
app = FastAPI()
|
| 214 |
|
| 215 |
@app.on_event("startup")
|
| 216 |
+
async def load_models_startup(): # Make startup async if needed for future async loads
|
| 217 |
+
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU
|
| 218 |
+
|
| 219 |
+
print(f"🚀 Starting up on device: {device}")
|
| 220 |
print("⏳ Lade Modelle …", flush=True)
|
| 221 |
|
| 222 |
+
tok = AutoTokenizer.from_pretrained(REPO)
|
| 223 |
+
print("Tokenizer loaded.")
|
| 224 |
+
|
| 225 |
+
# Load SNAC first (usually smaller)
|
| 226 |
+
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
| 227 |
+
print(f"SNAC loaded to {snac.device}.")
|
| 228 |
+
|
| 229 |
+
# Load the main model
|
| 230 |
model = AutoModelForCausalLM.from_pretrained(
|
| 231 |
REPO,
|
| 232 |
+
device_map={"": 0} if device == "cuda" else None, # Assign to GPU 0 if cuda
|
| 233 |
+
torch_dtype=torch.bfloat16 if device == "cuda" and torch.cuda.is_bf16_supported() else torch.float32, # Use bfloat16 if supported
|
| 234 |
+
low_cpu_mem_usage=True, # Good practice for large models
|
| 235 |
)
|
| 236 |
+
model.config.pad_token_id = model.config.eos_token_id # Set pad token
|
| 237 |
+
print(f"Model loaded to {model.device}.")
|
| 238 |
+
|
| 239 |
+
# Ensure model is in evaluation mode
|
| 240 |
+
model.eval()
|
| 241 |
+
|
| 242 |
+
# Initialize AudioMask (needs AUDIO_IDS on the correct device)
|
| 243 |
+
audio_ids_device = AUDIO_IDS_CPU.to(device)
|
| 244 |
+
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN)
|
| 245 |
+
print("AudioMask initialized.")
|
| 246 |
+
|
| 247 |
+
# Initialize StoppingCriteria
|
| 248 |
+
# IMPORTANT: Create the list and add the criteria instance
|
| 249 |
+
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(EOS_TOKEN)])
|
| 250 |
+
print("StoppingCriteria initialized.")
|
| 251 |
+
|
| 252 |
+
print("✅ Modelle geladen und bereit!", flush=True)
|
| 253 |
+
|
| 254 |
+
@app.get("/")
|
| 255 |
+
def hello():
|
| 256 |
+
return {"status": "ok", "message": "TTS Service is running"}
|
| 257 |
+
|
| 258 |
+
# 6) Helper zum Prompt Bauen -------------------------------------------
|
| 259 |
+
def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
|
| 260 |
+
"""Builds the input_ids and attention_mask for the model."""
|
| 261 |
+
# Format: <START> <VOICE>: <TEXT> <NEW_BLOCK>
|
| 262 |
+
prompt_text = f"{voice}: {text}"
|
| 263 |
+
prompt_ids = tok(prompt_text, return_tensors="pt").input_ids.to(device)
|
| 264 |
+
|
| 265 |
+
# Construct input_ids tensor
|
| 266 |
+
input_ids = torch.cat([
|
| 267 |
+
torch.tensor([[START_TOKEN]], device=device), # Start token
|
| 268 |
+
prompt_ids, # Encoded prompt
|
| 269 |
+
torch.tensor([[NEW_BLOCK]], device=device) # New block token to trigger audio
|
| 270 |
+
], dim=1)
|
| 271 |
+
|
| 272 |
+
# Create attention mask (all ones)
|
| 273 |
+
attention_mask = torch.ones_like(input_ids)
|
| 274 |
+
return input_ids, attention_mask
|
| 275 |
+
|
| 276 |
+
# 7) WebSocket‑Endpoint (vereinfacht mit Streamer) ---------------------
|
| 277 |
@app.websocket("/ws/tts")
|
| 278 |
async def tts(ws: WebSocket):
|
| 279 |
await ws.accept()
|
| 280 |
+
print(" клиент подключился") # Client connected
|
| 281 |
+
streamer = None # Initialize for finally block
|
| 282 |
+
main_loop = asyncio.get_running_loop() # Get the current event loop
|
| 283 |
+
|
| 284 |
try:
|
| 285 |
+
# Receive configuration
|
| 286 |
+
req_text = await ws.receive_text()
|
| 287 |
+
print(f"Received request: {req_text}")
|
| 288 |
+
req = json.loads(req_text)
|
| 289 |
+
text = req.get("text", "Hallo Welt, wie geht es dir heute?") # Default text
|
| 290 |
+
voice = req.get("voice", "Jakob") # Default voice
|
| 291 |
|
| 292 |
+
if not text:
|
| 293 |
+
await ws.close(code=1003, reason="Text cannot be empty")
|
| 294 |
+
return
|
| 295 |
+
|
| 296 |
+
print(f"Generating audio for: '{text}' with voice '{voice}'")
|
| 297 |
+
|
| 298 |
+
# Prepare prompt
|
| 299 |
ids, attn = build_prompt(text, voice)
|
| 300 |
+
|
| 301 |
+
# --- Reset stateful components ---
|
| 302 |
+
masker.reset() # CRITICAL: Reset the mask state for the new request
|
| 303 |
+
|
| 304 |
+
# --- Create Streamer Instance ---
|
| 305 |
+
streamer = AudioStreamer(ws, snac, masker, main_loop)
|
| 306 |
+
|
| 307 |
+
# --- Run model.generate in a separate thread ---
|
| 308 |
+
# This prevents blocking the main FastAPI event loop
|
| 309 |
+
print("Starting generation...")
|
| 310 |
+
await asyncio.to_thread(
|
| 311 |
+
model.generate,
|
| 312 |
+
input_ids=ids,
|
| 313 |
+
attention_mask=attn,
|
| 314 |
+
max_new_tokens=1500, # Limit generation length (adjust as needed)
|
| 315 |
+
logits_processor=[masker],
|
| 316 |
+
stopping_criteria=stopping_criteria,
|
| 317 |
+
do_sample=False, # Use greedy decoding for potentially more stable audio
|
| 318 |
+
# do_sample=True, temperature=0.7, top_p=0.95, # Or use sampling
|
| 319 |
+
use_cache=True,
|
| 320 |
+
streamer=streamer # Pass the custom streamer
|
| 321 |
+
# No need to manage past_key_values manually
|
| 322 |
+
)
|
| 323 |
+
print("Generation finished.")
|
| 324 |
+
|
| 325 |
+
except WebSocketDisconnect:
|
| 326 |
+
print("Client disconnected.")
|
| 327 |
+
except json.JSONDecodeError:
|
| 328 |
+
print("❌ Invalid JSON received.")
|
| 329 |
+
await ws.close(code=1003, reason="Invalid JSON format") # 1003 = Cannot accept data type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
except Exception as e:
|
| 331 |
+
error_details = traceback.format_exc()
|
| 332 |
+
print(f"❌ WS‑Error: {e}\n{error_details}", flush=True)
|
| 333 |
+
# Try to send an error message before closing, if possible
|
| 334 |
+
error_payload = json.dumps({"error": str(e)})
|
| 335 |
+
try:
|
| 336 |
+
if ws.client_state.name == "CONNECTED":
|
| 337 |
+
await ws.send_text(error_payload) # Send error as text/json
|
| 338 |
+
except Exception:
|
| 339 |
+
pass # Ignore error during error reporting
|
| 340 |
+
# Close with internal server error code
|
| 341 |
+
if ws.client_state.name == "CONNECTED":
|
| 342 |
+
await ws.close(code=1011) # 1011 = Internal Server Error
|
| 343 |
finally:
|
| 344 |
+
# Ensure streamer's end method is called if it exists
|
| 345 |
+
if streamer:
|
| 346 |
+
try:
|
| 347 |
+
streamer.end()
|
| 348 |
+
except Exception as e_end:
|
| 349 |
+
print(f"Error during streamer.end(): {e_end}")
|
| 350 |
+
|
| 351 |
+
# Ensure WebSocket is closed
|
| 352 |
+
print("Closing connection.")
|
| 353 |
if ws.client_state.name != "DISCONNECTED":
|
| 354 |
try:
|
| 355 |
+
await ws.close(code=1000) # 1000 = Normal Closure
|
| 356 |
+
except RuntimeError as e_close:
|
| 357 |
+
# Can happen if connection is already closing/closed
|
| 358 |
+
print(f"Runtime error closing websocket: {e_close}")
|
| 359 |
+
except Exception as e_close_final:
|
| 360 |
+
print(f"Error closing websocket: {e_close_final}")
|
| 361 |
+
print("Connection closed.")
|
| 362 |
|
| 363 |
+
# 8) Dev‑Start --------------------------------------------------------
|
| 364 |
if __name__ == "__main__":
|
| 365 |
+
import uvicorn
|
| 366 |
+
print("Starting Uvicorn server...")
|
| 367 |
+
# Use reload=True only for development, remove for production
|
| 368 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info") #, reload=True)
|