Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import asyncio
|
| 4 |
-
import logging
|
| 5 |
-
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
| 7 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 8 |
from huggingface_hub import login
|
| 9 |
from snac import SNAC
|
|
@@ -12,145 +13,153 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 12 |
# — HF‑Token & Login —
|
| 13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 14 |
if HF_TOKEN:
|
| 15 |
-
login(
|
| 16 |
|
| 17 |
-
# — Device
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
-
# — FastAPI
|
| 21 |
app = FastAPI()
|
| 22 |
|
| 23 |
-
# —
|
| 24 |
@app.get("/")
|
| 25 |
-
async def
|
| 26 |
-
return {"message": "
|
| 27 |
|
| 28 |
-
# — Modelle
|
| 29 |
@app.on_event("startup")
|
| 30 |
async def load_models():
|
| 31 |
global tokenizer, model, snac
|
| 32 |
-
|
|
|
|
| 33 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
| 34 |
|
|
|
|
| 35 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
| 36 |
-
logging.info("Lade TTS‑Modell...")
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(REPO)
|
| 38 |
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
REPO,
|
| 40 |
-
device_map="
|
| 41 |
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
| 42 |
-
low_cpu_mem_usage=True
|
|
|
|
| 43 |
).to(device)
|
| 44 |
model.config.pad_token_id = model.config.eos_token_id
|
| 45 |
-
logging.info("Modelle geladen ✔️")
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
# — Hilfsfunktion: Prompt in Token/Mask umwandeln —
|
| 53 |
def prepare_inputs(text: str, voice: str):
|
| 54 |
prompt = f"{voice}: {text}"
|
| 55 |
-
|
|
|
|
| 56 |
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
| 57 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
return
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
b = clean
|
| 79 |
-
l1.append(b[0])
|
| 80 |
-
l2.append(b[1])
|
| 81 |
-
# das Original verschachtelte Layer‑Mapping
|
| 82 |
-
l3.append(b[2])
|
| 83 |
-
l3.append(b[3])
|
| 84 |
-
l2.append(b[4])
|
| 85 |
-
l3.append(b[5])
|
| 86 |
-
l3.append(b[6])
|
| 87 |
codes = [
|
| 88 |
-
torch.tensor(
|
| 89 |
-
torch.tensor(
|
| 90 |
-
torch.tensor(
|
| 91 |
]
|
| 92 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
# — WebSocket
|
| 96 |
@app.websocket("/ws/tts")
|
| 97 |
async def tts_ws(ws: WebSocket):
|
| 98 |
await ws.accept()
|
| 99 |
try:
|
| 100 |
-
# 1) Input empfangen
|
| 101 |
msg = await ws.receive_text()
|
| 102 |
-
|
| 103 |
-
text =
|
| 104 |
-
voice =
|
| 105 |
|
| 106 |
-
#
|
| 107 |
input_ids, attention_mask = prepare_inputs(text, voice)
|
| 108 |
past_kvs = None
|
| 109 |
-
buffer = []
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
# indem Du in jedem Durchgang bis zu 50 Token samplet und aufsummierst)
|
| 113 |
while True:
|
| 114 |
out = model(
|
| 115 |
input_ids=input_ids if past_kvs is None else None,
|
| 116 |
attention_mask=attention_mask if past_kvs is None else None,
|
| 117 |
past_key_values=past_kvs,
|
| 118 |
use_cache=True,
|
|
|
|
| 119 |
)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
probs = torch.softmax(logits, dim=-1)
|
| 123 |
-
next_token = torch.multinomial(probs, num_samples=1).item()
|
| 124 |
|
| 125 |
-
# Ende
|
| 126 |
-
if
|
| 127 |
break
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
| 131 |
continue
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
pcm = decode_block(block)
|
| 140 |
-
except Exception as e:
|
| 141 |
-
logging.error(f"Fehler beim Dekodieren: {e}")
|
| 142 |
-
await ws.close(code=1011)
|
| 143 |
-
return
|
| 144 |
await ws.send_bytes(pcm)
|
| 145 |
|
| 146 |
-
#
|
| 147 |
-
input_ids =
|
| 148 |
-
attention_mask =
|
| 149 |
|
| 150 |
-
#
|
| 151 |
await ws.close()
|
| 152 |
except WebSocketDisconnect:
|
| 153 |
-
|
| 154 |
except Exception as e:
|
| 155 |
-
|
| 156 |
await ws.close(code=1011)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import asyncio
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
# Bugfix für PyTorch 2.2.x Flash‑SDP‑Assertion
|
| 6 |
+
torch.backends.cuda.enable_flash_sdp(False)
|
| 7 |
+
|
| 8 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 9 |
from huggingface_hub import login
|
| 10 |
from snac import SNAC
|
|
|
|
| 13 |
# — HF‑Token & Login —
|
| 14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 15 |
if HF_TOKEN:
|
| 16 |
+
login(HF_TOKEN)
|
| 17 |
|
| 18 |
+
# — Device wählen —
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
+
# — FastAPI instanzieren —
|
| 22 |
app = FastAPI()
|
| 23 |
|
| 24 |
+
# — Hello‑Route, damit GET / kein 404 mehr gibt —
|
| 25 |
@app.get("/")
|
| 26 |
+
async def read_root():
|
| 27 |
+
return {"message": "Orpheus TTS WebSocket Server läuft"}
|
| 28 |
|
| 29 |
+
# — Modelle beim Startup laden —
|
| 30 |
@app.on_event("startup")
|
| 31 |
async def load_models():
|
| 32 |
global tokenizer, model, snac
|
| 33 |
+
|
| 34 |
+
# SNAC für Audio‑Decoding
|
| 35 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
| 36 |
|
| 37 |
+
# Orpheus‑TTS Base
|
| 38 |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
|
|
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(REPO)
|
| 40 |
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
REPO,
|
| 42 |
+
device_map={"": 0} if device=="cuda" else None,
|
| 43 |
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
| 44 |
+
low_cpu_mem_usage=True,
|
| 45 |
+
return_legacy_cache=True # für compatibility mit past_key_values als Tuple
|
| 46 |
).to(device)
|
| 47 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
|
| 48 |
|
| 49 |
+
# --- Logit‑Masking vorbereiten ---
|
| 50 |
+
# reine Audio‑Tokens laufen von 128266 bis 128266+4096-1
|
| 51 |
+
AUDIO_OFFSET = 128266
|
| 52 |
+
AUDIO_COUNT = 4096
|
| 53 |
+
valid_audio = torch.arange(AUDIO_OFFSET, AUDIO_OFFSET + AUDIO_COUNT, device=device)
|
| 54 |
+
ctrl_tokens = torch.tensor([128257, model.config.eos_token_id], device=device)
|
| 55 |
+
global ALLOWED_IDS
|
| 56 |
+
ALLOWED_IDS = torch.cat([valid_audio, ctrl_tokens])
|
| 57 |
+
|
| 58 |
+
def sample_from_logits(logits: torch.Tensor) -> int:
|
| 59 |
+
"""
|
| 60 |
+
Maskt alle IDs außer ALLOWED_IDS und sampelt dann einen Token.
|
| 61 |
+
"""
|
| 62 |
+
# logits: [1, vocab_size]
|
| 63 |
+
mask = torch.full_like(logits, float("-inf"))
|
| 64 |
+
mask[0, ALLOWED_IDS] = 0.0
|
| 65 |
+
probs = torch.softmax(logits + mask, dim=-1)
|
| 66 |
+
return torch.multinomial(probs, num_samples=1).item()
|
| 67 |
|
|
|
|
| 68 |
def prepare_inputs(text: str, voice: str):
|
| 69 |
prompt = f"{voice}: {text}"
|
| 70 |
+
ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 71 |
+
# Start‐/End‐Marker
|
| 72 |
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
| 73 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
| 74 |
+
input_ids = torch.cat([start, ids, end], dim=1)
|
| 75 |
+
attention_mask = torch.ones_like(input_ids, device=device)
|
| 76 |
+
return input_ids, attention_mask
|
| 77 |
+
|
| 78 |
+
def decode_block(block: list[int]) -> bytes:
|
| 79 |
+
"""
|
| 80 |
+
Aus 7 gesampelten Audio‑Codes einen PCM‑16‑Byte‐Block dekodieren.
|
| 81 |
+
Hier erwarten wir block[i] = raw_token - 128266.
|
| 82 |
+
"""
|
| 83 |
+
layer1, layer2, layer3 = [], [], []
|
| 84 |
+
b = block
|
| 85 |
+
layer1.append(b[0])
|
| 86 |
+
layer2.append(b[1] - 4096)
|
| 87 |
+
layer3.append(b[2] - 2*4096)
|
| 88 |
+
layer3.append(b[3] - 3*4096)
|
| 89 |
+
layer2.append(b[4] - 4*4096)
|
| 90 |
+
layer3.append(b[5] - 5*4096)
|
| 91 |
+
layer3.append(b[6] - 6*4096)
|
| 92 |
+
|
| 93 |
+
dev = next(snac.parameters()).device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
codes = [
|
| 95 |
+
torch.tensor(layer1, device=dev).unsqueeze(0),
|
| 96 |
+
torch.tensor(layer2, device=dev).unsqueeze(0),
|
| 97 |
+
torch.tensor(layer3, device=dev).unsqueeze(0),
|
| 98 |
]
|
| 99 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
| 100 |
+
# in PCM16 umwandeln
|
| 101 |
+
pcm16 = (audio * 32767).astype("int16").tobytes()
|
| 102 |
+
return pcm16
|
| 103 |
|
| 104 |
+
# — WebSocket Endpoint für TTS Streaming —
|
| 105 |
@app.websocket("/ws/tts")
|
| 106 |
async def tts_ws(ws: WebSocket):
|
| 107 |
await ws.accept()
|
| 108 |
try:
|
|
|
|
| 109 |
msg = await ws.receive_text()
|
| 110 |
+
req = json.loads(msg)
|
| 111 |
+
text = req.get("text", "")
|
| 112 |
+
voice = req.get("voice", "Jakob")
|
| 113 |
|
| 114 |
+
# Inputs vorbereiten
|
| 115 |
input_ids, attention_mask = prepare_inputs(text, voice)
|
| 116 |
past_kvs = None
|
| 117 |
+
buffer = [] # sammelt die 7 Audio‑Codes
|
| 118 |
|
| 119 |
+
# Token‑für‑Token Loop
|
|
|
|
| 120 |
while True:
|
| 121 |
out = model(
|
| 122 |
input_ids=input_ids if past_kvs is None else None,
|
| 123 |
attention_mask=attention_mask if past_kvs is None else None,
|
| 124 |
past_key_values=past_kvs,
|
| 125 |
use_cache=True,
|
| 126 |
+
return_dict=True
|
| 127 |
)
|
| 128 |
+
past_kvs = out.past_key_values
|
| 129 |
+
next_tok = sample_from_logits(out.logits[:, -1, :])
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
# Ende?
|
| 132 |
+
if next_tok == model.config.eos_token_id:
|
| 133 |
break
|
| 134 |
+
|
| 135 |
+
# Reset bei neuem Audio‑Block‑Start
|
| 136 |
+
if next_tok == 128257:
|
| 137 |
+
buffer.clear()
|
| 138 |
+
input_ids = torch.tensor([[next_tok]], device=device)
|
| 139 |
+
attention_mask = torch.ones_like(input_ids)
|
| 140 |
continue
|
| 141 |
|
| 142 |
+
# Audio‑Code sammeln (Offset abziehen)
|
| 143 |
+
buffer.append(next_tok - 128266)
|
| 144 |
+
# sobald wir 7 Codes haben → dekodieren & senden
|
| 145 |
+
if len(buffer) == 7:
|
| 146 |
+
pcm = decode_block(buffer)
|
| 147 |
+
buffer.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
await ws.send_bytes(pcm)
|
| 149 |
|
| 150 |
+
# nächster Schritt: genau diesen Token wieder einspeisen
|
| 151 |
+
input_ids = torch.tensor([[next_tok]], device=device)
|
| 152 |
+
attention_mask = torch.ones_like(input_ids)
|
| 153 |
|
| 154 |
+
# sauber beenden
|
| 155 |
await ws.close()
|
| 156 |
except WebSocketDisconnect:
|
| 157 |
+
pass
|
| 158 |
except Exception as e:
|
| 159 |
+
print("Error in /ws/tts:", e)
|
| 160 |
await ws.close(code=1011)
|
| 161 |
+
|
| 162 |
+
# — CLI zum lokalen Testen —
|
| 163 |
+
if __name__ == "__main__":
|
| 164 |
+
import uvicorn
|
| 165 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|