TiberiuCristianLeon commited on
Commit
c294a46
·
verified ·
1 Parent(s): 0d91427

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -13
app.py CHANGED
@@ -22,7 +22,7 @@ iso1_to_name = {iso[1]: iso[0] for iso in non_empty_isos} # {'ro': 'Romanian', '
22
  models = ["Helsinki-NLP", "QUICKMT", "Argos", "Google", "HPLT", "t5-base", "t5-small", "t5-large",
23
  "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
24
  "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
25
- "HuggingFaceTB/SmolLM3-3B", "winninghealth/WiNGPT-Babel-2", "tencent/Hunyuan-MT-7B-fp8",
26
  "openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"]
27
  allmodels = ["Helsinki-NLP",
28
  "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
@@ -144,22 +144,39 @@ class Translators:
144
  else:
145
  prompt = f"Translate the following segment into {self.tl}, without additional explanation.\n\n{self.input_text}."
146
  tokenizer = AutoTokenizer.from_pretrained(self.model_name)
147
- model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto")
148
- model.tie_weights() # fp8
149
  messages = [{"role": "user", "content": prompt}]
 
 
 
 
 
 
 
 
 
 
150
  tokenized_chat = tokenizer.apply_chat_template(
151
  messages,
152
  tokenize=True,
153
- add_generation_prompt=False,
154
- return_tensors="pt",
155
- top_k=20,
156
- top_p=0.6,
157
- repetition_penalty=1.05,
158
- temperature=0.7
159
- )
160
- outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=512)
161
- output_text = tokenizer.decode(outputs[0])
162
- return output_text
 
 
 
 
 
 
 
 
163
 
164
  def HelsinkiNLP_mulroa(self):
165
  try:
 
22
  models = ["Helsinki-NLP", "QUICKMT", "Argos", "Google", "HPLT", "t5-base", "t5-small", "t5-large",
23
  "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
24
  "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
25
+ "HuggingFaceTB/SmolLM3-3B", "winninghealth/WiNGPT-Babel-2", "tencent/Hunyuan-MT-7B",
26
  "openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"]
27
  allmodels = ["Helsinki-NLP",
28
  "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
 
144
  else:
145
  prompt = f"Translate the following segment into {self.tl}, without additional explanation.\n\n{self.input_text}."
146
  tokenizer = AutoTokenizer.from_pretrained(self.model_name)
147
+ model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto", torch_dtype=torch.bfloat16)
 
148
  messages = [{"role": "user", "content": prompt}]
149
+ # tokenized_chat = tokenizer.apply_chat_template(
150
+ # messages,
151
+ # tokenize=True,
152
+ # add_generation_prompt=True,
153
+ # return_tensors="pt"
154
+ # )
155
+ # outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=512, top_k=20, top_p=0.6, repetition_penalty=1.05, temperature=0.7)
156
+ # output_text = tokenizer.decode(outputs[0])
157
+ # return output_text
158
+ # Tokenize the conversation
159
  tokenized_chat = tokenizer.apply_chat_template(
160
  messages,
161
  tokenize=True,
162
+ add_generation_prompt=True,
163
+ return_tensors="pt"
164
+ )
165
+ # Generate response
166
+ temperature = 0.7
167
+ with torch.no_grad():
168
+ outputs = model.generate(
169
+ tokenized_chat.to(model.device),
170
+ max_new_tokens=512,
171
+ temperature=temperature,
172
+ top_p=0.6,
173
+ do_sample=True if temperature > 0 else False,
174
+ pad_token_id=tokenizer.eos_token_id
175
+ )
176
+
177
+ # Decode only the new tokens
178
+ response = tokenizer.decode(outputs[0][tokenized_chat.shape[-1]:], skip_special_tokens=True)
179
+ return response
180
 
181
  def HelsinkiNLP_mulroa(self):
182
  try: