Spaces:
Running
on
Zero
Running
on
Zero
| import torch, os | |
| from safetensors import safe_open | |
| from contextlib import contextmanager | |
| import hashlib | |
| import matplotlib.pyplot as plt | |
| from matplotlib.colors import LinearSegmentedColormap | |
| import numpy as np | |
| def init_weights_on_device(device = torch.device("meta"), include_buffers :bool = False): | |
| old_register_parameter = torch.nn.Module.register_parameter | |
| if include_buffers: | |
| old_register_buffer = torch.nn.Module.register_buffer | |
| def register_empty_parameter(module, name, param): | |
| old_register_parameter(module, name, param) | |
| if param is not None: | |
| param_cls = type(module._parameters[name]) | |
| kwargs = module._parameters[name].__dict__ | |
| kwargs["requires_grad"] = param.requires_grad | |
| module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) | |
| def register_empty_buffer(module, name, buffer, persistent=True): | |
| old_register_buffer(module, name, buffer, persistent=persistent) | |
| if buffer is not None: | |
| module._buffers[name] = module._buffers[name].to(device) | |
| def patch_tensor_constructor(fn): | |
| def wrapper(*args, **kwargs): | |
| kwargs["device"] = device | |
| return fn(*args, **kwargs) | |
| return wrapper | |
| if include_buffers: | |
| tensor_constructors_to_patch = { | |
| torch_function_name: getattr(torch, torch_function_name) | |
| for torch_function_name in ["empty", "zeros", "ones", "full"] | |
| } | |
| else: | |
| tensor_constructors_to_patch = {} | |
| try: | |
| torch.nn.Module.register_parameter = register_empty_parameter | |
| if include_buffers: | |
| torch.nn.Module.register_buffer = register_empty_buffer | |
| for torch_function_name in tensor_constructors_to_patch.keys(): | |
| setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) | |
| yield | |
| finally: | |
| torch.nn.Module.register_parameter = old_register_parameter | |
| if include_buffers: | |
| torch.nn.Module.register_buffer = old_register_buffer | |
| for torch_function_name, old_torch_function in tensor_constructors_to_patch.items(): | |
| setattr(torch, torch_function_name, old_torch_function) | |
| def load_state_dict_from_folder(file_path, torch_dtype=None): | |
| state_dict = {} | |
| for file_name in os.listdir(file_path): | |
| if "." in file_name and file_name.split(".")[-1] in [ | |
| "safetensors", "bin", "ckpt", "pth", "pt" | |
| ]: | |
| state_dict.update(load_state_dict(os.path.join(file_path, file_name), torch_dtype=torch_dtype)) | |
| return state_dict | |
| def load_state_dict(file_path, torch_dtype=None): | |
| if file_path.endswith(".safetensors"): | |
| return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype) | |
| else: | |
| return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype) | |
| def load_state_dict_from_safetensors(file_path, torch_dtype=None): | |
| state_dict = {} | |
| with safe_open(file_path, framework="pt", device="cpu") as f: | |
| for k in f.keys(): | |
| state_dict[k] = f.get_tensor(k) | |
| if torch_dtype is not None: | |
| state_dict[k] = state_dict[k].to(torch_dtype) | |
| return state_dict | |
| def load_state_dict_from_bin(file_path, torch_dtype=None): | |
| state_dict = torch.load(file_path, map_location="cpu", weights_only=True) | |
| if torch_dtype is not None: | |
| for i in state_dict: | |
| if isinstance(state_dict[i], torch.Tensor): | |
| state_dict[i] = state_dict[i].to(torch_dtype) | |
| return state_dict | |
| def search_for_embeddings(state_dict): | |
| embeddings = [] | |
| for k in state_dict: | |
| if isinstance(state_dict[k], torch.Tensor): | |
| embeddings.append(state_dict[k]) | |
| elif isinstance(state_dict[k], dict): | |
| embeddings += search_for_embeddings(state_dict[k]) | |
| return embeddings | |
| def search_parameter(param, state_dict): | |
| for name, param_ in state_dict.items(): | |
| if param.numel() == param_.numel(): | |
| if param.shape == param_.shape: | |
| if torch.dist(param, param_) < 1e-3: | |
| return name | |
| else: | |
| if torch.dist(param.flatten(), param_.flatten()) < 1e-3: | |
| return name | |
| return None | |
| def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False): | |
| matched_keys = set() | |
| with torch.no_grad(): | |
| for name in source_state_dict: | |
| rename = search_parameter(source_state_dict[name], target_state_dict) | |
| if rename is not None: | |
| print(f'"{name}": "{rename}",') | |
| matched_keys.add(rename) | |
| elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0: | |
| length = source_state_dict[name].shape[0] // 3 | |
| rename = [] | |
| for i in range(3): | |
| rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict)) | |
| if None not in rename: | |
| print(f'"{name}": {rename},') | |
| for rename_ in rename: | |
| matched_keys.add(rename_) | |
| for name in target_state_dict: | |
| if name not in matched_keys: | |
| print("Cannot find", name, target_state_dict[name].shape) | |
| def search_for_files(folder, extensions): | |
| files = [] | |
| if os.path.isdir(folder): | |
| for file in sorted(os.listdir(folder)): | |
| files += search_for_files(os.path.join(folder, file), extensions) | |
| elif os.path.isfile(folder): | |
| for extension in extensions: | |
| if folder.endswith(extension): | |
| files.append(folder) | |
| break | |
| return files | |
| def convert_state_dict_keys_to_single_str(state_dict, with_shape=True): | |
| keys = [] | |
| for key, value in state_dict.items(): | |
| if isinstance(key, str): | |
| if isinstance(value, torch.Tensor): | |
| if with_shape: | |
| shape = "_".join(map(str, list(value.shape))) | |
| keys.append(key + ":" + shape) | |
| keys.append(key) | |
| elif isinstance(value, dict): | |
| keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape)) | |
| keys.sort() | |
| keys_str = ",".join(keys) | |
| return keys_str | |
| def split_state_dict_with_prefix(state_dict): | |
| keys = sorted([key for key in state_dict if isinstance(key, str)]) | |
| prefix_dict = {} | |
| for key in keys: | |
| prefix = key if "." not in key else key.split(".")[0] | |
| if prefix not in prefix_dict: | |
| prefix_dict[prefix] = [] | |
| prefix_dict[prefix].append(key) | |
| state_dicts = [] | |
| for prefix, keys in prefix_dict.items(): | |
| sub_state_dict = {key: state_dict[key] for key in keys} | |
| state_dicts.append(sub_state_dict) | |
| return state_dicts | |
| def hash_state_dict_keys(state_dict, with_shape=True): | |
| keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape) | |
| keys_str = keys_str.encode(encoding="UTF-8") | |
| return hashlib.md5(keys_str).hexdigest() | |
| def save_attention_maps(model, output_path, batch_idx, timestep, layer_indices=None): | |
| """ | |
| Visualize and save the attention maps from selected layers of the model | |
| Args: | |
| model: The DiT model with attention maps stored | |
| output_path: Directory to save visualizations | |
| batch_idx: Current batch index for file naming | |
| layer_indices: List of layer indices to visualize (if None, visualize all) | |
| """ | |
| timestep = int(float(str(timestep))) | |
| os.makedirs(os.path.join(output_path, "attention_maps"), exist_ok=True) | |
| # If layer indices not specified, visualize all layers | |
| if layer_indices is None: | |
| layer_indices = range(len(model.blocks)) | |
| # Create a custom colormap (similar to the ones used in attention visualization papers) | |
| colors = [(0, 0, 0.5), (0, 0, 1), (0, 0.5, 1), (0, 1, 1), | |
| (0.5, 1, 0.5), (1, 1, 0), (1, 0.5, 0), (1, 0, 0), (0.5, 0, 0)] | |
| attention_cmap = LinearSegmentedColormap.from_list('attention_cmap', colors) | |
| for i in layer_indices: | |
| if not hasattr(model.blocks[i].self_attn, '_last_attn_maps'): | |
| continue | |
| attn_map = model.blocks[i].self_attn._last_attn_maps | |
| grid_size = model.blocks[i].self_attn._last_grid_sizes | |
| seq_len = model.blocks[i].self_attn._last_seq_lens | |
| # attn_maps.shape=[s, s] | |
| np.savez_compressed(os.path.join(output_path, | |
| "attention_maps", | |
| f"attn_maps_layer{i}_batch{batch_idx}_t{timestep}.npz"), | |
| attn_map=attn_map, grid_size=grid_size, seq_len=seq_len) | |
| print(f"Saving Layer {i}, Batch {batch_idx} attention maps") | |
| attn_map -= attn_map.min() | |
| attn_map /= attn_map.max() | |
| plt.figure(figsize=(10, 8)) | |
| plt.imshow(attn_map ** 0.25, cmap=attention_cmap) | |
| plt.colorbar(label='Attention Weight') | |
| plt.title(f'Layer {i}, Batch {batch_idx} (Average)') | |
| save_path = os.path.join( | |
| output_path, | |
| "attention_maps", | |
| f"attn_map_layer{i}_average_batch{batch_idx}_t{timestep}.png" | |
| ) | |
| plt.savefig(save_path, dpi=300, bbox_inches='tight') | |
| plt.close() | |
| # Clean up the stored attention maps to free memory | |
| for i in layer_indices: | |
| if hasattr(model.blocks[i].self_attn, '_last_attn_maps'): | |
| del model.blocks[i].self_attn._last_attn_maps | |