Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch GIT model.""" | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.activations import ACT2FN | |
| from transformers.file_utils import ModelOutput | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPast, | |
| BaseModelOutputWithPooling, | |
| CausalLMOutputWithPast, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
| from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
| from transformers.models.git.configuration_git import GitConfig, GitVisionConfig | |
| from .vit_pixel_masks_utils import ViTPatchMaskGenerator | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "microsoft/git-base" | |
| _CONFIG_FOR_DOC = "GitConfig" | |
| GIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "microsoft/git-base", | |
| # See all GIT models at https://huggingface.co/models?filter=git | |
| ] | |
| # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git | |
| class GitVisionModelOutput(ModelOutput): | |
| """ | |
| Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
| Args: | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The image embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| # Copied from transformers.models.bart.modeling_bart._expand_mask | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
| class GitEmbeddings(nn.Module): | |
| """Construct the embeddings from word and position embeddings.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
| self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
| self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| past_key_values_length: int = 0, | |
| ) -> torch.Tensor: | |
| if input_ids is not None: | |
| input_shape = input_ids.size() | |
| else: | |
| input_shape = inputs_embeds.size()[:-1] | |
| seq_length = input_shape[1] | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] | |
| if inputs_embeds is None: | |
| embeddings = self.word_embeddings(input_ids) | |
| else: | |
| embeddings = inputs_embeds | |
| if self.position_embedding_type == "absolute": | |
| position_embeddings = self.position_embeddings(position_ids) | |
| embeddings += position_embeddings | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class GitSelfAttention(nn.Module): | |
| def __init__(self, config, position_embedding_type=None): | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
| raise ValueError( | |
| f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
| f"heads ({config.num_attention_heads})" | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1) | |
| if config.num_image_with_embedding is not None: | |
| self.image_patch_tokens *= config.num_image_with_embedding | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| self.position_embedding_type = position_embedding_type or getattr( | |
| config, "position_embedding_type", "absolute" | |
| ) | |
| if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
| def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| pixel_values_present: Optional[bool] = False, | |
| image_token_num: Optional[int] = None | |
| ) -> Tuple[torch.Tensor]: | |
| mixed_query_layer = self.query(hidden_states) | |
| if image_token_num is not None: | |
| cutoff = image_token_num | |
| else: | |
| cutoff = self.image_patch_tokens if pixel_values_present else 0 | |
| if past_key_value is not None: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2) | |
| value_layer = torch.cat( | |
| [value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2 | |
| ) | |
| else: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| use_cache = past_key_value is not None | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| # NOTE: like in other caches, we store the text component. In GIT it means we discard the image component. | |
| past_key_value = ( | |
| key_layer[:, :, cutoff:, :], | |
| value_layer[:, :, cutoff:, :], | |
| ) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
| query_length, key_length = query_layer.shape[2], key_layer.shape[2] | |
| if use_cache: | |
| position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( | |
| -1, 1 | |
| ) | |
| else: | |
| position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
| position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
| distance = position_ids_l - position_ids_r | |
| positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
| positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
| if self.position_embedding_type == "relative_key": | |
| relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
| attention_scores = attention_scores + relative_position_scores | |
| elif self.position_embedding_type == "relative_key_query": | |
| relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
| relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
| attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| if attention_mask is not None: | |
| # Apply the attention mask is (precomputed for all layers in GitModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
| outputs = outputs + (past_key_value,) | |
| return outputs | |
| # Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
| class GitSelfOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class GitAttention(nn.Module): | |
| # Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git | |
| def __init__(self, config, position_embedding_type=None): | |
| super().__init__() | |
| self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type) | |
| self.output = GitSelfOutput(config) | |
| self.pruned_heads = set() | |
| # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.self.query = prune_linear_layer(self.self.query, index) | |
| self.self.key = prune_linear_layer(self.self.key, index) | |
| self.self.value = prune_linear_layer(self.self.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
| self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| pixel_values_present: Optional[bool] = False, | |
| image_token_num: Optional[int] = None | |
| ) -> Tuple[torch.Tensor]: | |
| self_outputs = self.self( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| past_key_value, | |
| output_attentions, | |
| pixel_values_present, | |
| image_token_num | |
| ) | |
| attention_output = self.output(self_outputs[0], hidden_states) | |
| outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| # Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
| class GitIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertOutput | |
| class GitOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class GitLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
| self.seq_len_dim = 1 | |
| self.attention = GitAttention(config) | |
| self.intermediate = GitIntermediate(config) | |
| self.output = GitOutput(config) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| pixel_values_present: Optional[bool] = False, | |
| image_token_num: Optional[bool] = None, | |
| ) -> Tuple[torch.Tensor]: | |
| # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
| self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
| self_attention_outputs = self.attention( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| output_attentions=output_attentions, | |
| past_key_value=self_attn_past_key_value, | |
| pixel_values_present=pixel_values_present, | |
| image_token_num=image_token_num | |
| ) | |
| attention_output = self_attention_outputs[0] | |
| # if decoder, the last output is tuple of self-attn cache | |
| outputs = self_attention_outputs[1:-1] | |
| present_key_value = self_attention_outputs[-1] | |
| layer_output = apply_chunking_to_forward( | |
| self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
| ) | |
| outputs = (layer_output,) + outputs | |
| # if decoder, return the attn key/values as the last output | |
| outputs = outputs + (present_key_value,) | |
| return outputs | |
| def feed_forward_chunk(self, attention_output): | |
| intermediate_output = self.intermediate(attention_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| return layer_output | |
| class GitEncoder(nn.Module): | |
| # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = False, | |
| output_hidden_states: Optional[bool] = False, | |
| pixel_values_present: Optional[bool] = False, | |
| image_token_num: Optional[int] = None, | |
| return_dict: Optional[bool] = True, | |
| ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| next_decoder_cache = () if use_cache else None | |
| for i, layer_module in enumerate(self.layer): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_head_mask = head_mask[i] if head_mask is not None else None | |
| past_key_value = past_key_values[i] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, past_key_value, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer_module), | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| ) | |
| else: | |
| layer_outputs = layer_module( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| past_key_value, | |
| output_attentions, | |
| pixel_values_present, | |
| image_token_num, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[-1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [ | |
| hidden_states, | |
| next_decoder_cache, | |
| all_hidden_states, | |
| all_self_attentions, | |
| ] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_decoder_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| class GitPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = GitConfig | |
| base_model_prefix = "git" | |
| supports_gradient_checkpointing = True | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, GitVisionEmbeddings): | |
| nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range) | |
| nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range) | |
| nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range) | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (GitEncoder, GitVisionEncoder)): | |
| module.gradient_checkpointing = value | |
| GIT_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`GitConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| GIT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `({0})`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
| [`CLIPImageProcessor.__call__`] for details. | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git | |
| class GitVisionEmbeddings(nn.Module): | |
| def __init__(self, config: GitVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) | |
| self.patch_embedding = nn.Conv2d( | |
| in_channels=config.num_channels, | |
| out_channels=self.embed_dim, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| bias=False, | |
| ) | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.num_positions = self.num_patches + 1 | |
| self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
| self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1))) | |
| def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
| batch_size = pixel_values.shape[0] | |
| patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] | |
| patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
| class_embeds = self.class_embedding.expand(batch_size, 1, -1) | |
| embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
| embeddings = embeddings + self.position_embedding(self.position_ids) | |
| return embeddings | |
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP | |
| class GitVisionMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.clip.modeling_clip.CLIPAttention | |
| class GitVisionAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale = self.head_dim**-0.5 | |
| self.dropout = config.attention_dropout | |
| self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| causal_attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| bsz, tgt_len, embed_dim = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scale | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.view(*proj_shape) | |
| value_states = value_states.view(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| # apply the causal_attention_mask first | |
| if causal_attention_mask is not None: | |
| if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
| f" {causal_attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if output_attentions: | |
| # this operation is a bit akward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision | |
| class GitVisionEncoderLayer(nn.Module): | |
| def __init__(self, config: GitVisionConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = GitVisionAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = GitVisionMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| causal_attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| `(config.encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| causal_attention_mask=causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = residual + hidden_states | |
| residual = hidden_states | |
| hidden_states = self.layer_norm2(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig | |
| class GitVisionEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`GitVisionEncoderLayer`]. | |
| Args: | |
| config: GitVisionConfig | |
| """ | |
| def __init__(self, config: GitVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| causal_attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Causal mask for the text model. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| causal_attention_mask, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| GIT_VISION_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class GitVisionTransformer(nn.Module): | |
| # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git | |
| def __init__(self, config: GitVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = GitVisionEmbeddings(config) | |
| self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.patch_mask_generator = ViTPatchMaskGenerator(config.patch_size) | |
| self.encoder = GitVisionEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| pixel_masks: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| hidden_states = self.embeddings(pixel_values) | |
| B, N, D = hidden_states.shape | |
| # print('Before mask:', hidden_states.shape) | |
| if pixel_masks is not None: | |
| assert pixel_masks.shape[0] == 1 | |
| patch_masks = self.patch_mask_generator(pixel_masks) | |
| # print(patch_masks.shape) | |
| patch_masks = patch_masks.unsqueeze(-1).expand_as(hidden_states) | |
| hidden_states = hidden_states.masked_select(patch_masks).view(B, -1, D) | |
| # print('After mask:', hidden_states.shape) | |
| hidden_states = self.pre_layrnorm(hidden_states) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.post_layernorm(last_hidden_state) | |
| if not return_dict: | |
| return (last_hidden_state,) + encoder_outputs[1:] | |
| return BaseModelOutput( | |
| last_hidden_state=last_hidden_state, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class GitVisionModel(GitPreTrainedModel): | |
| config_class = GitVisionConfig | |
| main_input_name = "pixel_values" | |
| # Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git | |
| def __init__(self, config: GitVisionConfig): | |
| super().__init__(config) | |
| self.vision_model = GitVisionTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| pixel_masks: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, GitVisionModel | |
| >>> processor = AutoProcessor.from_pretrained("microsoft/git-base") | |
| >>> model = GitVisionModel.from_pretrained("microsoft/git-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| return self.vision_model( | |
| pixel_values=pixel_values, | |
| pixel_masks=pixel_masks, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class GitProjection(nn.Module): | |
| def __init__(self, config: GitConfig): | |
| super().__init__() | |
| self.config = config | |
| self.visual_projection = nn.Sequential( | |
| nn.Linear(config.vision_config.hidden_size, config.hidden_size), | |
| nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps), | |
| ) | |
| def forward(self, embeddings: torch.Tensor) -> torch.Tensor: | |
| return self.visual_projection(embeddings) | |
| class GitModel(GitPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.config = config | |
| self.embeddings = GitEmbeddings(config) | |
| self.image_encoder = GitVisionModel(config.vision_config) | |
| self.encoder = GitEncoder(config) | |
| self.visual_projection = GitProjection(config) | |
| if config.num_image_with_embedding is not None: | |
| self.img_temperal_embedding = nn.ParameterList( | |
| nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size)) | |
| for _ in range(config.num_image_with_embedding) | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embeddings.word_embeddings | |
| def set_input_embeddings(self, value): | |
| self.embeddings.word_embeddings = value | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor: | |
| # Default mask is for forward direction. Flip for backward direction. | |
| mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1) | |
| mask = mask.masked_fill(mask == 1, float("-inf")) | |
| return mask | |
| def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None): | |
| num_tgt = tgt.shape[1] | |
| num_memory = memory.shape[1] | |
| device = tgt.device | |
| dtype = tgt.dtype | |
| top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype) | |
| top_right = torch.full( | |
| (num_memory, num_tgt + past_key_values_length), | |
| float("-inf"), | |
| device=tgt.device, | |
| dtype=dtype, | |
| ) | |
| bottom_left = torch.zeros( | |
| (num_tgt, num_memory), | |
| dtype=dtype, | |
| device=tgt_mask.device, | |
| ) | |
| if past_key_values_length > 0: | |
| tgt_mask = torch.zeros( | |
| (tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length), | |
| dtype=dtype, | |
| device=tgt_mask.device, | |
| ) | |
| left = torch.cat((top_left, bottom_left), dim=0) | |
| right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0) | |
| full_attention_mask = torch.cat((left, right), dim=1)[None, :] | |
| if memory_key_padding_mask is None: | |
| memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device) | |
| # if it is False, it means valid. That is, it is not a padding | |
| if memory_key_padding_mask.dtype != torch.bool: | |
| raise ValueError("Memory key padding mask must be a boolean tensor.") | |
| zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype) | |
| zero_negative_infinity[memory_key_padding_mask] = float("-inf") | |
| full_attention_mask = full_attention_mask.expand( | |
| (memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt) | |
| ) | |
| full_attention_mask = full_attention_mask.clone() | |
| origin_left = full_attention_mask[:, :, :num_memory] | |
| update = zero_negative_infinity[:, None, :] | |
| full_attention_mask[:, :, :num_memory] = origin_left + update | |
| # add axis for multi-head | |
| full_attention_mask = full_attention_mask[:, None, :, :] | |
| return full_attention_mask | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| pixel_masks: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: | |
| r""" | |
| past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoProcessor, AutoModel | |
| >>> import requests | |
| >>> from PIL import Image | |
| >>> processor = AutoProcessor.from_pretrained("microsoft/git-base") | |
| >>> model = AutoModel.from_pretrained("microsoft/git-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> text = "this is an image of two cats" | |
| >>> inputs = processor(text, images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| seq_length = input_shape[1] | |
| # past_key_values_length | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| projected_visual_features = None | |
| if pixel_values is not None: | |
| if pixel_values.ndim == 4: | |
| # here we assume pixel_values is of shape (batch_size, num_channels, height, width) | |
| visual_features = self.image_encoder(pixel_values=pixel_values, pixel_masks=pixel_masks).last_hidden_state | |
| elif pixel_values.ndim == 5: | |
| # here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width) | |
| visual_features = [] | |
| for frame_idx in range(pixel_values.shape[1]): | |
| visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state | |
| visual_features_frame += self.img_temperal_embedding[frame_idx] | |
| visual_features.append(visual_features_frame) | |
| # finally, concatenate all features along sequence dimension | |
| visual_features = torch.cat(visual_features, dim=1) | |
| else: | |
| raise ValueError("pixel_values must be of rank 4 or 5") | |
| projected_visual_features = self.visual_projection(visual_features) | |
| image_token_num = projected_visual_features.shape[1] | |
| embedding_output = self.embeddings( | |
| input_ids=input_ids, | |
| position_ids=position_ids, | |
| inputs_embeds=inputs_embeds, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if projected_visual_features is None: | |
| projected_visual_features = torch.zeros( | |
| (embedding_output.shape[0], 0, embedding_output.shape[2]), | |
| dtype=embedding_output.dtype, | |
| device=embedding_output.device, | |
| ) | |
| # Repeat visual features to match embedding batch size. | |
| projected_visual_features = projected_visual_features.repeat( | |
| embedding_output.size(0) // projected_visual_features.size(0), 1, 1 | |
| ) | |
| # concatenate patch token and text token embeddings | |
| hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1) | |
| # By default, an additive causal mask is created | |
| # for masking the future (one direction). | |
| tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device) | |
| # Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len) | |
| combined_attention_mask = self.create_attention_mask( | |
| tgt=embedding_output, | |
| memory=projected_visual_features, | |
| tgt_mask=tgt_mask, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if attention_mask is not None: | |
| # if the user provides an attention mask, we add it to the default one | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask(attention_mask, embedding_output.dtype, tgt_len=input_shape[-1]).to( | |
| embedding_output.device | |
| ) | |
| if past_key_values_length > 0: | |
| expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :] | |
| else: | |
| combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask | |
| encoder_outputs = self.encoder( | |
| hidden_states, | |
| attention_mask=combined_attention_mask, | |
| head_mask=head_mask, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| pixel_values_present=pixel_values is not None, | |
| image_token_num=image_token_num | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| if not return_dict: | |
| return (sequence_output,) + encoder_outputs[1:] | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=sequence_output, | |
| past_key_values=encoder_outputs.past_key_values, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class GitForCausalLM(GitPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.git = GitModel(config) | |
| self.output = nn.Linear(config.hidden_size, config.vocab_size) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.output | |
| def set_output_embeddings(self, new_embeddings): | |
| self.output = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| pixel_masks: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.Tensor]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
| `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are | |
| ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` | |
| past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| Returns: | |
| Examples: | |
| Image captioning example: | |
| ```python | |
| >>> from transformers import AutoProcessor, AutoModelForCausalLM | |
| >>> import requests | |
| >>> from PIL import Image | |
| >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") | |
| >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
| >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50) | |
| >>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| >>> print(generated_caption) | |
| two cats sleeping on a pink blanket next to remotes. | |
| ``` | |
| Visual question answering (VQA) example: | |
| ```python | |
| >>> from transformers import AutoProcessor, AutoModelForCausalLM | |
| >>> from huggingface_hub import hf_hub_download | |
| >>> from PIL import Image | |
| >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa") | |
| >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa") | |
| >>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") | |
| >>> image = Image.open(file_path).convert("RGB") | |
| >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
| >>> question = "what does the front of the bus say at the top?" | |
| >>> input_ids = processor(text=question, add_special_tokens=False).input_ids | |
| >>> input_ids = [processor.tokenizer.cls_token_id] + input_ids | |
| >>> input_ids = torch.tensor(input_ids).unsqueeze(0) | |
| >>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) | |
| >>> print(processor.batch_decode(generated_ids, skip_special_tokens=True)) | |
| ['what does the front of the bus say at the top? special'] | |
| ``` | |
| Video captioning example: | |
| ```python | |
| >>> import av | |
| >>> import numpy as np | |
| >>> from PIL import Image | |
| >>> from huggingface_hub import hf_hub_download | |
| >>> from transformers import AutoProcessor, AutoModelForCausalLM | |
| >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex") | |
| >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex") | |
| >>> # set seed for reproducability | |
| >>> np.random.seed(45) | |
| >>> def read_video_pyav(container, indices): | |
| ... ''' | |
| ... Decode the video with PyAV decoder. | |
| ... Args: | |
| ... container (`av.container.input.InputContainer`): PyAV container. | |
| ... indices (`List[int]`): List of frame indices to decode. | |
| ... Returns: | |
| ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). | |
| ... ''' | |
| ... frames = [] | |
| ... container.seek(0) | |
| ... start_index = indices[0] | |
| ... end_index = indices[-1] | |
| ... for i, frame in enumerate(container.decode(video=0)): | |
| ... if i > end_index: | |
| ... break | |
| ... if i >= start_index and i in indices: | |
| ... frames.append(frame) | |
| ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
| >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
| ... converted_len = int(clip_len * frame_sample_rate) | |
| ... end_idx = np.random.randint(converted_len, seg_len) | |
| ... start_idx = end_idx - converted_len | |
| ... indices = np.linspace(start_idx, end_idx, num=clip_len) | |
| ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
| ... return indices | |
| >>> # load video | |
| >>> file_path = hf_hub_download( | |
| ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" | |
| ... ) | |
| >>> container = av.open(file_path) | |
| >>> # sample frames | |
| >>> num_frames = model.config.num_image_with_embedding | |
| >>> indices = sample_frame_indices( | |
| ... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames | |
| ... ) | |
| >>> frames = read_video_pyav(container, indices) | |
| >>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values | |
| >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50) | |
| >>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True)) | |
| Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.'] | |
| ``` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| use_cache = False | |
| outputs = self.git( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| pixel_values=pixel_values, | |
| pixel_masks=pixel_masks, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.output(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| # we are doing next-token prediction; shift prediction scores and input ids by one | |
| num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens | |
| shifted_logits = logits[:, num_image_tokens:-1, :].contiguous() | |
| labels = labels[:, 1:].contiguous() | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs | |
| ): | |
| # cut decoder_input_ids if past_key_values is used | |
| if past_key_values is not None: | |
| input_ids = input_ids[:, -1:] | |
| # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
| input_shape = input_ids.shape | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(input_shape) | |
| return { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": kwargs.get("pixel_values", None), | |
| "pixel_masks": kwargs.get("pixel_masks", None), | |
| "past_key_values": past_key_values, | |
| "use_cache": use_cache, | |
| } | |
| def _reorder_cache(self, past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
| return reordered_past | |