Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import zipfile
|
|
| 5 |
from datasets import Dataset
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
import logging
|
| 8 |
-
|
| 9 |
|
| 10 |
# Set up logging
|
| 11 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
@@ -55,7 +55,7 @@ def segment_text(file_path):
|
|
| 55 |
logger.info(f"Segmented text into {len(chunks)} chunks.")
|
| 56 |
return chunks
|
| 57 |
|
| 58 |
-
# Function to process the text file and make API calls
|
| 59 |
def process_text(file, prompt):
|
| 60 |
try:
|
| 61 |
logger.info("Starting text processing...")
|
|
@@ -64,40 +64,48 @@ def process_text(file, prompt):
|
|
| 64 |
file_path = file.name if hasattr(file, "name") else file
|
| 65 |
chunks = segment_text(file_path)
|
| 66 |
|
| 67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
results = []
|
| 69 |
for idx, chunk in enumerate(chunks):
|
| 70 |
logger.info(f"Processing chunk {idx + 1}/{len(chunks)}")
|
| 71 |
try:
|
|
|
|
| 72 |
result = call_api(f"{prompt}\n\n{chunk}")
|
| 73 |
results.append(result)
|
| 74 |
logger.info(f"Chunk {idx + 1} processed successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
except Exception as e:
|
| 76 |
logger.error(f"Failed to process chunk {idx + 1}: {e}")
|
| 77 |
raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}")
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
os.makedirs("outputs", exist_ok=True)
|
| 81 |
-
for idx, result in enumerate(results):
|
| 82 |
-
output_file = f"outputs/output_{idx}.txt"
|
| 83 |
-
with open(output_file, "w", encoding="utf-8") as f:
|
| 84 |
-
f.write(result)
|
| 85 |
-
logger.info(f"Saved result to {output_file}")
|
| 86 |
-
|
| 87 |
-
# Upload to Hugging Face dataset
|
| 88 |
-
try:
|
| 89 |
-
logger.info("Uploading results to Hugging Face dataset...")
|
| 90 |
-
hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN"))
|
| 91 |
-
if not hf_api.token:
|
| 92 |
-
raise ValueError("Hugging Face token not found in environment variables.")
|
| 93 |
-
dataset = Dataset.from_dict({"text": results})
|
| 94 |
-
dataset.push_to_hub("TeacherPuffy/book") # Updated dataset name
|
| 95 |
-
logger.info("Results uploaded to Hugging Face dataset successfully.")
|
| 96 |
-
except Exception as e:
|
| 97 |
-
logger.error(f"Failed to upload to Hugging Face: {e}")
|
| 98 |
-
raise gr.Error(f"Failed to upload to Hugging Face: {str(e)}")
|
| 99 |
-
|
| 100 |
-
# Create a ZIP file
|
| 101 |
try:
|
| 102 |
logger.info("Creating ZIP file...")
|
| 103 |
with zipfile.ZipFile("outputs.zip", "w") as zipf:
|
|
@@ -109,7 +117,7 @@ def process_text(file, prompt):
|
|
| 109 |
logger.error(f"Failed to create ZIP file: {e}")
|
| 110 |
raise gr.Error(f"Failed to create ZIP file: {str(e)}")
|
| 111 |
|
| 112 |
-
return "outputs.zip", "
|
| 113 |
|
| 114 |
except Exception as e:
|
| 115 |
logger.error(f"An error occurred during processing: {e}")
|
|
@@ -117,7 +125,7 @@ def process_text(file, prompt):
|
|
| 117 |
|
| 118 |
# Gradio interface
|
| 119 |
with gr.Blocks() as demo:
|
| 120 |
-
gr.Markdown("## Text File Processor with API Calls")
|
| 121 |
with gr.Row():
|
| 122 |
file_input = gr.File(label="Upload Text File")
|
| 123 |
prompt_input = gr.Textbox(label="Enter Prompt")
|
|
|
|
| 5 |
from datasets import Dataset
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
import logging
|
| 8 |
+
import time # Import time module for adding delays
|
| 9 |
|
| 10 |
# Set up logging
|
| 11 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
| 55 |
logger.info(f"Segmented text into {len(chunks)} chunks.")
|
| 56 |
return chunks
|
| 57 |
|
| 58 |
+
# Function to process the text file and make API calls with rate limiting
|
| 59 |
def process_text(file, prompt):
|
| 60 |
try:
|
| 61 |
logger.info("Starting text processing...")
|
|
|
|
| 64 |
file_path = file.name if hasattr(file, "name") else file
|
| 65 |
chunks = segment_text(file_path)
|
| 66 |
|
| 67 |
+
# Initialize Hugging Face API
|
| 68 |
+
hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN"))
|
| 69 |
+
if not hf_api.token:
|
| 70 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
| 71 |
+
|
| 72 |
+
# Process each chunk with a 20-second delay between API calls
|
| 73 |
results = []
|
| 74 |
for idx, chunk in enumerate(chunks):
|
| 75 |
logger.info(f"Processing chunk {idx + 1}/{len(chunks)}")
|
| 76 |
try:
|
| 77 |
+
# Call the API
|
| 78 |
result = call_api(f"{prompt}\n\n{chunk}")
|
| 79 |
results.append(result)
|
| 80 |
logger.info(f"Chunk {idx + 1} processed successfully.")
|
| 81 |
+
|
| 82 |
+
# Save the result to a file
|
| 83 |
+
os.makedirs("outputs", exist_ok=True)
|
| 84 |
+
output_file = f"outputs/output_{idx}.txt"
|
| 85 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 86 |
+
f.write(result)
|
| 87 |
+
logger.info(f"Saved result to {output_file}")
|
| 88 |
+
|
| 89 |
+
# Upload the chunk to Hugging Face
|
| 90 |
+
try:
|
| 91 |
+
logger.info(f"Uploading chunk {idx + 1} to Hugging Face...")
|
| 92 |
+
dataset = Dataset.from_dict({"text": [result]})
|
| 93 |
+
dataset.push_to_hub("TeacherPuffy/book") # Updated dataset name
|
| 94 |
+
logger.info(f"Chunk {idx + 1} uploaded to Hugging Face successfully.")
|
| 95 |
+
except Exception as e:
|
| 96 |
+
logger.error(f"Failed to upload chunk {idx + 1} to Hugging Face: {e}")
|
| 97 |
+
raise gr.Error(f"Failed to upload chunk {idx + 1} to Hugging Face: {str(e)}")
|
| 98 |
+
|
| 99 |
+
# Wait 20 seconds before the next API call
|
| 100 |
+
if idx < len(chunks) - 1: # No need to wait after the last chunk
|
| 101 |
+
logger.info("Waiting 20 seconds before the next API call...")
|
| 102 |
+
time.sleep(20)
|
| 103 |
+
|
| 104 |
except Exception as e:
|
| 105 |
logger.error(f"Failed to process chunk {idx + 1}: {e}")
|
| 106 |
raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}")
|
| 107 |
|
| 108 |
+
# Create a ZIP file of all outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
logger.info("Creating ZIP file...")
|
| 111 |
with zipfile.ZipFile("outputs.zip", "w") as zipf:
|
|
|
|
| 117 |
logger.error(f"Failed to create ZIP file: {e}")
|
| 118 |
raise gr.Error(f"Failed to create ZIP file: {str(e)}")
|
| 119 |
|
| 120 |
+
return "outputs.zip", "All chunks processed and uploaded to Hugging Face. ZIP file created."
|
| 121 |
|
| 122 |
except Exception as e:
|
| 123 |
logger.error(f"An error occurred during processing: {e}")
|
|
|
|
| 125 |
|
| 126 |
# Gradio interface
|
| 127 |
with gr.Blocks() as demo:
|
| 128 |
+
gr.Markdown("## Text File Processor with Rate-Limited API Calls")
|
| 129 |
with gr.Row():
|
| 130 |
file_input = gr.File(label="Upload Text File")
|
| 131 |
prompt_input = gr.Textbox(label="Enter Prompt")
|