Spaces:
Paused
Paused
| import gradio as gr | |
| from gradio_client import Client | |
| from huggingface_hub import HfApi | |
| import logging | |
| import time | |
| import os | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
| logger = logging.getLogger(__name__) | |
| # Function to call the API and get the result | |
| def call_api(prompt): | |
| try: | |
| # Reload the Gradio client for each chunk | |
| client = Client("MiniMaxAI/MiniMax-Text-01") | |
| logger.info(f"Calling API with prompt: {prompt[:100]}...") # Log the first 100 chars of the prompt | |
| result = client.predict( | |
| message=prompt, | |
| max_tokens=12800, | |
| temperature=0.1, | |
| top_p=0.9, | |
| api_name="/chat" | |
| ) | |
| logger.info("API call successful.") | |
| return result | |
| except Exception as e: | |
| logger.error(f"API call failed: {e}") | |
| raise gr.Error(f"API call failed: {str(e)}") | |
| # Function to segment the text into chunks of 1500 words | |
| def segment_text(text): | |
| # Split the text into chunks of 1500 words | |
| words = text.split() | |
| chunks = [" ".join(words[i:i + 1500]) for i in range(0, len(words), 1250)] | |
| logger.info(f"Segmented text into {len(chunks)} chunks.") | |
| return chunks | |
| # Function to read file content with fallback encoding | |
| def read_file_content(file): | |
| try: | |
| # Try reading with UTF-8 encoding first | |
| if hasattr(file, "read"): | |
| content = file.read().decode('utf-8') | |
| else: | |
| content = file.decode('utf-8') | |
| logger.info("File read successfully with UTF-8 encoding.") | |
| return content | |
| except UnicodeDecodeError: | |
| # Fallback to latin-1 encoding if UTF-8 fails | |
| logger.warning("UTF-8 encoding failed. Trying latin-1 encoding.") | |
| if hasattr(file, "read"): | |
| file.seek(0) # Reset file pointer to the beginning | |
| content = file.read().decode('latin-1') | |
| else: | |
| content = file.decode('latin-1') | |
| logger.info("File read successfully with latin-1 encoding.") | |
| return content | |
| except Exception as e: | |
| logger.error(f"Failed to read file: {e}") | |
| raise gr.Error(f"Failed to read file: {str(e)}") | |
| # Function to process the text and make API calls with rate limiting | |
| def process_text(file, prompt): | |
| try: | |
| logger.info("Starting text processing...") | |
| # Read the file content with fallback encoding | |
| text = read_file_content(file) | |
| logger.info(f"Text length: {len(text)} characters.") | |
| # Segment the text into chunks | |
| chunks = segment_text(text) | |
| # Initialize Hugging Face API | |
| hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN")) | |
| if not hf_api.token: | |
| raise ValueError("Hugging Face token not found in environment variables.") | |
| # Repository name on Hugging Face Hub | |
| repo_name = "TeacherPuffy/book2" | |
| # Process each chunk with a 15-second delay between API calls | |
| results = [] | |
| for idx, chunk in enumerate(chunks): | |
| logger.info(f"Processing chunk {idx + 1}/{len(chunks)}") | |
| try: | |
| # Call the API | |
| result = call_api(f"{prompt}\n\n{chunk}") | |
| results.append(result) | |
| logger.info(f"Chunk {idx + 1} processed successfully.") | |
| # Upload the chunk directly to Hugging Face | |
| try: | |
| logger.info(f"Uploading chunk {idx + 1} to Hugging Face...") | |
| hf_api.upload_file( | |
| path_or_fileobj=result.encode('utf-8'), # Convert result to bytes | |
| path_in_repo=f"output_{idx}.txt", # File name in the repository | |
| repo_id=repo_name, | |
| repo_type="dataset", | |
| ) | |
| logger.info(f"Chunk {idx + 1} uploaded to Hugging Face successfully.") | |
| except Exception as e: | |
| logger.error(f"Failed to upload chunk {idx + 1} to Hugging Face: {e}") | |
| raise gr.Error(f"Failed to upload chunk {idx + 1} to Hugging Face: {str(e)}") | |
| # Wait 15 seconds before the next API call | |
| if idx < len(chunks) - 1: # No need to wait after the last chunk | |
| logger.info("Waiting 15 seconds before the next API call...") | |
| time.sleep(15) | |
| except Exception as e: | |
| logger.error(f"Failed to process chunk {idx + 1}: {e}") | |
| raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}") | |
| return "All chunks processed and uploaded to Hugging Face." | |
| except Exception as e: | |
| logger.error(f"An error occurred during processing: {e}") | |
| raise gr.Error(f"An error occurred: {str(e)}") | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Text File Processor with Rate-Limited API Calls") | |
| with gr.Row(): | |
| file_input = gr.File(label="Upload Text File") | |
| prompt_input = gr.Textbox(label="Enter Prompt") | |
| with gr.Row(): | |
| output_message = gr.Textbox(label="Status Message") | |
| submit_button = gr.Button("Submit") | |
| submit_button.click( | |
| process_text, | |
| inputs=[file_input, prompt_input], | |
| outputs=[output_message] | |
| ) | |
| # Launch the Gradio app with a public link | |
| demo.launch(share=True) |