import numpy as np import faiss from sentence_transformers import SentenceTransformer from sentence_transformers.cross_encoder import CrossEncoder from transformers import pipeline from PIL import Image, ImageChops, ImageEnhance import torch from google.cloud import vision import os import io from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers import T5Tokenizer, T5ForConditionalGeneration from dotenv import load_dotenv import requests from bs4 import BeautifulSoup import trafilatura as tra DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' class retriver: def __init__(self): self.retrivermodel = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def build_faiss_idx(self, evidence_corpus): embeddings = self.retrivermodel.encode(evidence_corpus) index = faiss.IndexFlatIP(embeddings.shape[1]) index.add(np.array(embeddings, dtype=np.float32)) faiss.write_index(index, "evidence_index.faiss") return index def retrieve_evidence(self, claim, index, evidence_corpus, top_k=10): claim_embedding = self.retrivermodel.encode([claim]) distances, indices = index.search(np.array(claim_embedding, dtype=np.float32), top_k) retrieved_docs = [evidence_corpus[i] for i in indices[0]] return retrieved_docs, indices[0] class reranker: def __init__(self): self.reranker_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=DEVICE) def rerank_evidendce(self, claim, evidence_list): sentance_pairs = [[claim, evidence] for evidence in evidence_list] score = self.reranker_model.predict(sentance_pairs) scored_evidence = sorted(zip(score, evidence_list), reverse=True) return scored_evidence class Classifier: def __init__(self): self.model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli" self.label_names = ["entailment", "neutral", "contradiction"] self.device = torch.device(DEVICE) print(f"Classifier device: {self.device}") self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model.eval() def classify(self, claim, top_evidence): verdicts = [] evidences = [e[1] for e in top_evidence] if not evidences: return "NEUTRAL", [] inputs = self.tokenizer(evidences, [claim] * len(evidences), return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): inputs = {k: v.to(self.device) for k, v in inputs.items()} outputs = self.model(**inputs) probs = torch.softmax(outputs.logits, dim=-1) for i, evidence in enumerate(evidences): pred = torch.argmax(probs[i]).item() verdicts.append({ "evidence": evidence, "verdict": self.label_names[pred], "scores": {name: float(probs[i][j]) for j, name in enumerate(self.label_names)} }) top_verdict_info = verdicts[0] if top_verdict_info["verdict"] == "entailment" and top_verdict_info["scores"]["entailment"] > 0.8: result = "TRUE" elif top_verdict_info["verdict"] == "contradiction" and top_verdict_info["scores"]["contradiction"] > 0.8: result = "FALSE" else: for v in verdicts[1:]: if v["verdict"] == "contradiction" and v["scores"]["contradiction"] > 0.9: result = "FALSE" break else: result = "NEUTRAL" return result, verdicts def __call__(self, claim, evidences): return self.classify(claim, evidences) class summarizer: def __init__(self): self.model_name = "google/flan-t5-base" # Using a smaller model for server efficiency self.model = T5ForConditionalGeneration.from_pretrained(self.model_name) self.tokenizer = T5Tokenizer.from_pretrained(self.model_name) self.device = torch.device(DEVICE) self.model.to(self.device) self.model.eval() print(f"Summarizer device: {self.device}") def forward(self, claim, top_evidence, verdict, max_input_len=1024, max_output_len=150): evidence_texts = [e[1] for e in top_evidence] if not evidence_texts: return verdict, "No evidence was provided to generate a summary." evidence_text = "\n---\n".join(evidence_texts) input_text = f"""Claim: "{claim}"\nVerdict: {verdict}\nEvidence:\n{evidence_text}\n\nWrite a short, neutral explanation for why the verdict is {verdict}, based only on the evidence provided.""" inputs = self.tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_input_len).to(self.device) with torch.no_grad(): summary_ids = self.model.generate(inputs["input_ids"], max_length=max_output_len, num_beams=4, early_stopping=True) summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return verdict, summary def __call__(self, claim, top_evidence, verdict): return self.forward(claim, top_evidence, verdict) class FactChecker: def __init__(self): self.factcheck_api = "https://factchecktools.googleapis.com/v1alpha1/claims:search" self.google_search = "https://www.google.com/search" load_dotenv() self.factcheck_api_key = os.getenv('GOOGLE_FACT_CHECK_API_KEY') # Lazy load heavy models self.reranker = None self.classifier = None self.summarizer = None def check_google_factcheck(self, claim: str, pages: int = 5): if not self.factcheck_api_key: print("Google FactCheck API key not found in .env file.") return None params = {'key': self.factcheck_api_key, 'query': claim, 'languageCode': 'en-US', 'pageSize': pages} try: response = requests.get(self.factcheck_api, params=params, timeout=10) response.raise_for_status() data = response.json() if 'claims' in data and data['claims']: claim_data = data['claims'][0] review = claim_data.get('claimReview', [{}])[0] return { 'claim': claim_data.get('text', claim), 'verdict': review.get('textualRating', 'Unknown'), 'summary': f"Rated by {review.get('publisher', {}).get('name', 'Unknown')}", 'source': [review.get('publisher', {}).get('name', 'Unknown')], 'method': 'google_factcheck', 'URLs': [review.get('url', '')] } except Exception as e: print(f"FactCheck API error: {e}") return None def google_news_search(self, query: str, num_pages: int = 1): print("Searching the Web...") headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"} articles_gg = [] for page in range(num_pages): params = {"q": query, "tbm": "nws", 'start': page * 10} try: res = requests.get(self.google_search, params=params, headers=headers, timeout=15) soup = BeautifulSoup(res.text, 'html.parser') # Note: This selector is fragile and may break if Google changes its HTML. for article_link in soup.select("a.WlydOe"): title_div = article_link.find('div', class_="n0jPhd") source_div = article_link.find('div', class_="MgUUmf") if not (title_div and source_div): continue title = title_div.text a_url = article_link['href'] source = source_div.text content = tra.extract(tra.fetch_url(a_url)) if a_url else "No content extracted" articles_gg.append({'title': title, 'url': a_url, 'text': content or "", 'source': source}) except Exception as e: print(f"Error during web search: {e}") top_evidences = [d.get('text', '') for d in articles_gg] urls = [d.get('url', '') for d in articles_gg] return top_evidences, urls, articles_gg def search_and_analyze_claim(self, claim: str): print("Performing web analysis...") if self.reranker is None: print("Loading AI models for web analysis...") self.reranker = reranker() self.classifier = Classifier() self.summarizer = summarizer() top_evidences, urls, article_list = self.google_news_search(claim) if not top_evidences: return {'claim': claim, 'verdict': 'Unverifiable', 'summary': 'No relevant sources found.', 'source': [], 'method': 'web_search', 'URLs': []} reranked_articles = self.reranker.rerank_evidendce(claim, top_evidences) if not reranked_articles: return {'claim': claim, 'verdict': 'Unverifiable', 'summary': 'No relevant sources found after reranking.', 'source': [], 'method': 'web_search', 'URLs': []} verdict, _ = self.classifier(claim, reranked_articles) _, summary = self.summarizer(claim, reranked_articles[:3], verdict) return { 'claim': claim, 'verdict': verdict, 'summary': summary, 'source': [arc.get('source', '') for arc in article_list], 'method': 'web_analysis', 'URLs': urls } def check_claim(self, claim: str): """Main function to check a claim using the fallback pipeline.""" print(f"\n--- Checking claim: '{claim}' ---") factcheck_result = self.check_google_factcheck(claim) if factcheck_result: print("Found result in FactCheck database.") return factcheck_result print("No FactCheck result, falling back to live web analysis...") return self.search_and_analyze_claim(claim) class img_manipulation: def __init__(self): self.GEN_AI_IMAGE = pipeline("image-classification", model="umm-maybe/AI-image-detector", device=DEVICE) def Gen_AI_IMG(self, img_pth): try: with Image.open(img_pth) as img: img = img.convert('RGB') result = self.GEN_AI_IMAGE(img) proba = next((item['score'] for item in result if item['label'] == 'artificial'), 0.0) return proba * 100 except Exception as e: print(f'AI image detection error: {e}') return 0.0 def generated_image(self, img_pth, quality=90): """ Calculates the ELA score entirely in memory without saving any files. """ try: with Image.open(img_pth) as orig_img: orig_img = orig_img.convert('RGB') # Create an in-memory buffer to hold the re-saved image buffer = io.BytesIO() orig_img.save(buffer, 'JPEG', quality=quality) buffer.seek(0) # Rewind buffer to the beginning with Image.open(buffer) as resaved_img: # Calculate the difference between the original and re-saved image ela_image = ImageChops.difference(orig_img, resaved_img) ela_data = np.array(ela_image) mean_intensity = ela_data.mean() scaled_score = min(100, (mean_intensity / 25.0) * 100) return scaled_score except Exception as e: print(f'ELA calculation error: {e}') return 0.0 def run_image_forensics(self, image_path): ai_score = self.Gen_AI_IMG(image_path) classic_score = self.generated_image(image_path) # The return dictionary no longer includes 'ela_image_path' return { "ai_generated_score_percent": ai_score, "classic_edit_score_percent": classic_score, } class OCR: def __init__(self, key_path=None): # If no key_path is provided, try to get from environment variable if key_path is None: key_json = os.environ.get('GOOGE_VISION_API') if key_json: # Write the JSON to a temporary file import tempfile with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f: f.write(key_json) key_path = f.name else: # Fallback to default path if environment variable not set key_path = 'GOOGLE_VISION_API.json' os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = key_path self.client = vision.ImageAnnotatorClient() self.temp_key_path = key_path if key_json else None def __del__(self): # Clean up temporary file if we created one if self.temp_key_path and os.path.exists(self.temp_key_path): os.unlink(self.temp_key_path) def _get_full_vision_analysis(self, img_pth): try: with open(img_pth, 'rb') as image_file: content = image_file.read() image = vision.Image(content=content) features = [{'type_': vision.Feature.Type.DOCUMENT_TEXT_DETECTION}, {'type_': vision.Feature.Type.SAFE_SEARCH_DETECTION}, {'type_': vision.Feature.Type.LANDMARK_DETECTION}, {'type_': vision.Feature.Type.LOGO_DETECTION}, {'type_': vision.Feature.Type.WEB_DETECTION}] response = self.client.annotate_image({'image': image, 'features': features}) return response, None except Exception as e: return None, str(e) def get_in_image_anal(self, img_pth): response, error = self._get_full_vision_analysis(img_pth) if error: return {'error': error} report = {} if response.full_text_annotation: report['Extracted Text'] = response.full_text_annotation.text if response.safe_search_annotation: safe = response.safe_search_annotation report['Safe Search'] = {'adult': vision.Likelihood(safe.adult).name, 'violence': vision.Likelihood(safe.violence).name} entities = [] if response.landmark_annotations: entities.extend([f'Landmark: {l.description}' for l in response.landmark_annotations]) if response.logo_annotations: entities.extend([f'Logo: {l.description}' for l in response.logo_annotations]) if entities: report['Identified Entities'] = entities return report def rev_img_search(self, img_pth): response, error = self._get_full_vision_analysis(img_pth) if error: return {'error': error} report = {} if response.web_detection and response.web_detection.pages_with_matching_images: matches = [{'title': p.page_title, 'url': p.url} for p in response.web_detection.pages_with_matching_images[:5]] report['Reverse Image Matches'] = matches return report