FORENSIC-TOOLKIT / pmo_func.py
TanmayTomar's picture
Update pmo_func.py
cd294c7 verified
raw
history blame
15.3 kB
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from transformers import pipeline
from PIL import Image, ImageChops, ImageEnhance
import torch
from google.cloud import vision
import os
import io
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
import trafilatura as tra
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
class retriver:
def __init__(self):
self.retrivermodel = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def build_faiss_idx(self, evidence_corpus):
embeddings = self.retrivermodel.encode(evidence_corpus)
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(np.array(embeddings, dtype=np.float32))
faiss.write_index(index, "evidence_index.faiss")
return index
def retrieve_evidence(self, claim, index, evidence_corpus, top_k=10):
claim_embedding = self.retrivermodel.encode([claim])
distances, indices = index.search(np.array(claim_embedding, dtype=np.float32), top_k)
retrieved_docs = [evidence_corpus[i] for i in indices[0]]
return retrieved_docs, indices[0]
class reranker:
def __init__(self):
self.reranker_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=DEVICE)
def rerank_evidendce(self, claim, evidence_list):
sentance_pairs = [[claim, evidence] for evidence in evidence_list]
score = self.reranker_model.predict(sentance_pairs)
scored_evidence = sorted(zip(score, evidence_list), reverse=True)
return scored_evidence
class Classifier:
def __init__(self):
self.model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
self.label_names = ["entailment", "neutral", "contradiction"]
self.device = torch.device(DEVICE)
print(f"Classifier device: {self.device}")
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model.eval()
def classify(self, claim, top_evidence):
verdicts = []
evidences = [e[1] for e in top_evidence]
if not evidences:
return "NEUTRAL", []
inputs = self.tokenizer(evidences, [claim] * len(evidences), return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outputs = self.model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
for i, evidence in enumerate(evidences):
pred = torch.argmax(probs[i]).item()
verdicts.append({
"evidence": evidence,
"verdict": self.label_names[pred],
"scores": {name: float(probs[i][j]) for j, name in enumerate(self.label_names)}
})
top_verdict_info = verdicts[0]
if top_verdict_info["verdict"] == "entailment" and top_verdict_info["scores"]["entailment"] > 0.8:
result = "TRUE"
elif top_verdict_info["verdict"] == "contradiction" and top_verdict_info["scores"]["contradiction"] > 0.8:
result = "FALSE"
else:
for v in verdicts[1:]:
if v["verdict"] == "contradiction" and v["scores"]["contradiction"] > 0.9:
result = "FALSE"
break
else:
result = "NEUTRAL"
return result, verdicts
def __call__(self, claim, evidences):
return self.classify(claim, evidences)
class summarizer:
def __init__(self):
self.model_name = "google/flan-t5-base" # Using a smaller model for server efficiency
self.model = T5ForConditionalGeneration.from_pretrained(self.model_name)
self.tokenizer = T5Tokenizer.from_pretrained(self.model_name)
self.device = torch.device(DEVICE)
self.model.to(self.device)
self.model.eval()
print(f"Summarizer device: {self.device}")
def forward(self, claim, top_evidence, verdict, max_input_len=1024, max_output_len=150):
evidence_texts = [e[1] for e in top_evidence]
if not evidence_texts:
return verdict, "No evidence was provided to generate a summary."
evidence_text = "\n---\n".join(evidence_texts)
input_text = f"""Claim: "{claim}"\nVerdict: {verdict}\nEvidence:\n{evidence_text}\n\nWrite a short, neutral explanation for why the verdict is {verdict}, based only on the evidence provided."""
inputs = self.tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_input_len).to(self.device)
with torch.no_grad():
summary_ids = self.model.generate(inputs["input_ids"], max_length=max_output_len, num_beams=4, early_stopping=True)
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return verdict, summary
def __call__(self, claim, top_evidence, verdict):
return self.forward(claim, top_evidence, verdict)
class FactChecker:
def __init__(self):
self.factcheck_api = "https://factchecktools.googleapis.com/v1alpha1/claims:search"
self.google_search = "https://www.google.com/search"
load_dotenv()
self.factcheck_api_key = os.getenv('GOOGLE_FACT_CHECK_API_KEY')
# Lazy load heavy models
self.reranker = None
self.classifier = None
self.summarizer = None
def check_google_factcheck(self, claim: str, pages: int = 5):
if not self.factcheck_api_key:
print("Google FactCheck API key not found in .env file.")
return None
params = {'key': self.factcheck_api_key, 'query': claim, 'languageCode': 'en-US', 'pageSize': pages}
try:
response = requests.get(self.factcheck_api, params=params, timeout=10)
response.raise_for_status()
data = response.json()
if 'claims' in data and data['claims']:
claim_data = data['claims'][0]
review = claim_data.get('claimReview', [{}])[0]
return {
'claim': claim_data.get('text', claim),
'verdict': review.get('textualRating', 'Unknown'),
'summary': f"Rated by {review.get('publisher', {}).get('name', 'Unknown')}",
'source': [review.get('publisher', {}).get('name', 'Unknown')],
'method': 'google_factcheck',
'URLs': [review.get('url', '')]
}
except Exception as e:
print(f"FactCheck API error: {e}")
return None
def google_news_search(self, query: str, num_pages: int = 1):
print("Searching the Web...")
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"}
articles_gg = []
for page in range(num_pages):
params = {"q": query, "tbm": "nws", 'start': page * 10}
try:
res = requests.get(self.google_search, params=params, headers=headers, timeout=15)
soup = BeautifulSoup(res.text, 'html.parser')
# Note: This selector is fragile and may break if Google changes its HTML.
for article_link in soup.select("a.WlydOe"):
title_div = article_link.find('div', class_="n0jPhd")
source_div = article_link.find('div', class_="MgUUmf")
if not (title_div and source_div): continue
title = title_div.text
a_url = article_link['href']
source = source_div.text
content = tra.extract(tra.fetch_url(a_url)) if a_url else "No content extracted"
articles_gg.append({'title': title, 'url': a_url, 'text': content or "", 'source': source})
except Exception as e:
print(f"Error during web search: {e}")
top_evidences = [d.get('text', '') for d in articles_gg]
urls = [d.get('url', '') for d in articles_gg]
return top_evidences, urls, articles_gg
def search_and_analyze_claim(self, claim: str):
print("Performing web analysis...")
if self.reranker is None:
print("Loading AI models for web analysis...")
self.reranker = reranker()
self.classifier = Classifier()
self.summarizer = summarizer()
top_evidences, urls, article_list = self.google_news_search(claim)
if not top_evidences:
return {'claim': claim, 'verdict': 'Unverifiable', 'summary': 'No relevant sources found.', 'source': [], 'method': 'web_search', 'URLs': []}
reranked_articles = self.reranker.rerank_evidendce(claim, top_evidences)
if not reranked_articles:
return {'claim': claim, 'verdict': 'Unverifiable', 'summary': 'No relevant sources found after reranking.', 'source': [], 'method': 'web_search', 'URLs': []}
verdict, _ = self.classifier(claim, reranked_articles)
_, summary = self.summarizer(claim, reranked_articles[:3], verdict)
return {
'claim': claim,
'verdict': verdict,
'summary': summary,
'source': [arc.get('source', '') for arc in article_list],
'method': 'web_analysis',
'URLs': urls
}
def check_claim(self, claim: str):
"""Main function to check a claim using the fallback pipeline."""
print(f"\n--- Checking claim: '{claim}' ---")
factcheck_result = self.check_google_factcheck(claim)
if factcheck_result:
print("Found result in FactCheck database.")
return factcheck_result
print("No FactCheck result, falling back to live web analysis...")
return self.search_and_analyze_claim(claim)
class img_manipulation:
def __init__(self):
self.GEN_AI_IMAGE = pipeline("image-classification", model="umm-maybe/AI-image-detector", device=DEVICE)
def Gen_AI_IMG(self, img_pth):
try:
with Image.open(img_pth) as img:
img = img.convert('RGB')
result = self.GEN_AI_IMAGE(img)
proba = next((item['score'] for item in result if item['label'] == 'artificial'), 0.0)
return proba * 100
except Exception as e:
print(f'AI image detection error: {e}')
return 0.0
def generated_image(self, img_pth, quality=90):
"""
Calculates the ELA score entirely in memory without saving any files.
"""
try:
with Image.open(img_pth) as orig_img:
orig_img = orig_img.convert('RGB')
# Create an in-memory buffer to hold the re-saved image
buffer = io.BytesIO()
orig_img.save(buffer, 'JPEG', quality=quality)
buffer.seek(0) # Rewind buffer to the beginning
with Image.open(buffer) as resaved_img:
# Calculate the difference between the original and re-saved image
ela_image = ImageChops.difference(orig_img, resaved_img)
ela_data = np.array(ela_image)
mean_intensity = ela_data.mean()
scaled_score = min(100, (mean_intensity / 25.0) * 100)
return scaled_score
except Exception as e:
print(f'ELA calculation error: {e}')
return 0.0
def run_image_forensics(self, image_path):
ai_score = self.Gen_AI_IMG(image_path)
classic_score = self.generated_image(image_path)
# The return dictionary no longer includes 'ela_image_path'
return {
"ai_generated_score_percent": ai_score,
"classic_edit_score_percent": classic_score,
}
class OCR:
def __init__(self, key_path=None):
# If no key_path is provided, try to get from environment variable
if key_path is None:
key_json = os.environ.get('GOOGE_VISION_API')
if key_json:
# Write the JSON to a temporary file
import tempfile
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
f.write(key_json)
key_path = f.name
else:
# Fallback to default path if environment variable not set
key_path = 'GOOGLE_VISION_API.json'
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = key_path
self.client = vision.ImageAnnotatorClient()
self.temp_key_path = key_path if key_json else None
def __del__(self):
# Clean up temporary file if we created one
if self.temp_key_path and os.path.exists(self.temp_key_path):
os.unlink(self.temp_key_path)
def _get_full_vision_analysis(self, img_pth):
try:
with open(img_pth, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
features = [{'type_': vision.Feature.Type.DOCUMENT_TEXT_DETECTION}, {'type_': vision.Feature.Type.SAFE_SEARCH_DETECTION}, {'type_': vision.Feature.Type.LANDMARK_DETECTION}, {'type_': vision.Feature.Type.LOGO_DETECTION}, {'type_': vision.Feature.Type.WEB_DETECTION}]
response = self.client.annotate_image({'image': image, 'features': features})
return response, None
except Exception as e:
return None, str(e)
def get_in_image_anal(self, img_pth):
response, error = self._get_full_vision_analysis(img_pth)
if error: return {'error': error}
report = {}
if response.full_text_annotation: report['Extracted Text'] = response.full_text_annotation.text
if response.safe_search_annotation:
safe = response.safe_search_annotation
report['Safe Search'] = {'adult': vision.Likelihood(safe.adult).name, 'violence': vision.Likelihood(safe.violence).name}
entities = []
if response.landmark_annotations: entities.extend([f'Landmark: {l.description}' for l in response.landmark_annotations])
if response.logo_annotations: entities.extend([f'Logo: {l.description}' for l in response.logo_annotations])
if entities: report['Identified Entities'] = entities
return report
def rev_img_search(self, img_pth):
response, error = self._get_full_vision_analysis(img_pth)
if error: return {'error': error}
report = {}
if response.web_detection and response.web_detection.pages_with_matching_images:
matches = [{'title': p.page_title, 'url': p.url} for p in response.web_detection.pages_with_matching_images[:5]]
report['Reverse Image Matches'] = matches
return report