Spaces:
Sleeping
Sleeping
File size: 1,897 Bytes
0cec2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import pandas as pd
import faiss
import os
import json
def run_text_pipeline(claim: str, state: dict):
"""
Executes the text analysis pipeline using pre-loaded tools.
"""
# Unpack all the necessary tools and data from the state dictionary
retriever = state['retriever']
reranker = state['reranker']
classifier = state['classifier']
summarizer = state['summarizer']
fact_checker = state['fact_checker']
df = state['df']
evidence_corpus = state['evidence_corpus']
faiss_index = state['faiss_index']
# --- RAG Pipeline ---
retrieved_docs, indices = retriever.retrieve_evidence(claim, faiss_index, evidence_corpus)
reranked_docs = reranker.rerank_evidendce(claim, retrieved_docs)
if not reranked_docs:
# --- Fallback to Google Fact Check ---
print("No results from RAG, trying Google Fact Check...")
result = fact_checker.check_claim(claim)
return {
"final_verdict": result.get('verdict', 'NEUTRAL'),
"explanation": result.get('summary', 'Could not verify claim.'),
"source": {result.get('source'): result.get('URLs', ['#'])[0]} if result else {}
}
final_verdict, _ = classifier(claim, reranked_docs)
top_evidence_for_summary = reranked_docs[:3]
_, explanation = summarizer(claim, top_evidence_for_summary, final_verdict)
# Get sources from the original dataframe
sources_dict = {}
if len(indices) > 0 and 'source' in df.columns and 'url' in df.columns:
df_rel = df.iloc[indices]
# Handle potential duplicate sources by taking the first URL for each source
sources_dict = df_rel.groupby('source')['url'].first().to_dict()
return {
"final_verdict": final_verdict,
"explanation": explanation,
"source": sources_dict
}
|