""" DocMind - Gradio Chat Interface Multi-agent research assistant for arXiv papers """ import gradio as gr from retriever import PaperRetriever from agents import DocMindOrchestrator from fetch_arxiv_data import ArxivFetcher import os class DocMindApp: def __init__(self): self.retriever = None self.orchestrator = None self.setup_system() def setup_system(self): """Initialize retriever and load index""" print("Initializing DocMind...") # Initialize retriever self.retriever = PaperRetriever() # Try to load existing index if not self.retriever.load_index(): print("No index found. Building new index...") fetcher = ArxivFetcher() papers = fetcher.load_papers("arxiv_papers.json") if papers: self.retriever.build_index(papers) self.retriever.save_index() print(f"Index built with {len(papers)} papers") else: print("⚠️ Warning: No papers found. Please run fetch_arxiv_data.py first") return # Initialize orchestrator self.orchestrator = DocMindOrchestrator(self.retriever) print("DocMind ready!") def chat( self, message: str, history: list, num_papers: int = 5, show_agent_logs: bool = True ) -> str: """ Process chat message Args: message: User query history: Chat history (not used in current version) num_papers: Number of papers to include in response show_agent_logs: Whether to show agent processing logs Returns: Response string """ if not self.orchestrator: return "⚠️ System not initialized. Please run fetch_arxiv_data.py to download papers first." if not message.strip(): return "Please enter a question about research papers." try: # Process query through agent pipeline response = self.orchestrator.process_query( message, top_k=num_papers * 2, # Retrieve more, filter to top N max_papers_in_response=num_papers ) return response except Exception as e: return f"❌ Error processing query: {str(e)}\n\nPlease try rephrasing your question." def create_interface(): """Create Gradio chat interface""" app = DocMindApp() # Custom CSS for better styling css = """ .gradio-container { font-family: 'Inter', 'Segoe UI', sans-serif; max-width: 1400px !important; } /* Header styling */ h1 { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; font-weight: 700; font-size: 2.5em !important; margin-bottom: 0.5em; } /* Chat area improvements */ .message-wrap { padding: 1.2em !important; margin: 0.8em 0 !important; border-radius: 12px !important; line-height: 1.6; } /* User message */ .message-wrap.user { background: linear-gradient(135deg, #667eea15 0%, #764ba215 100%) !important; border-left: 3px solid #667eea; } /* Bot message */ .message-wrap.bot { background: #f8f9fa !important; border-left: 3px solid #28a745; } /* Input area */ .input-text textarea { border-radius: 12px !important; border: 2px solid #e0e0e0 !important; font-size: 1.05em !important; } .input-text textarea:focus { border-color: #667eea !important; box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important; } /* Buttons */ .btn-primary { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; border: none !important; border-radius: 10px !important; padding: 0.8em 2em !important; font-weight: 600 !important; transition: transform 0.2s !important; } .btn-primary:hover { transform: translateY(-2px) !important; box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4) !important; } /* Settings panel */ .settings-panel { background: #f8f9fa; border-radius: 12px; padding: 1.5em; } /* Slider */ input[type="range"] { accent-color: #667eea !important; } /* Example buttons */ .examples button { border-radius: 8px !important; border: 2px solid #e0e0e0 !important; padding: 0.7em 1em !important; transition: all 0.2s !important; } .examples button:hover { border-color: #667eea !important; background: #667eea10 !important; } /* Code blocks in responses */ code { background: #f4f4f4; padding: 0.2em 0.4em; border-radius: 4px; font-family: 'Courier New', monospace; } /* Remove footer */ footer { display: none !important; } /* Improve markdown rendering */ .markdown-body h2 { color: #667eea; border-bottom: 2px solid #667eea; padding-bottom: 0.3em; margin-top: 1.5em; } .markdown-body h3 { color: #764ba2; margin-top: 1.2em; } /* Better list styling */ .markdown-body ul { line-height: 1.8; } .markdown-body li { margin: 0.5em 0; } """ # Example queries examples = [ "What are the latest methods for improving diffusion models?", "Summarize recent work on RLHF vs DPO for language model alignment", "What are the main challenges in scaling transformer models?", "Tell me about recent advances in vision transformers", "What's new in retrieval-augmented generation (RAG)?", ] with gr.Blocks(css=css, title="DocMind - arXiv Research Assistant", theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🧠 DocMind: Multi-Agent Research Assistant Ask questions about recent AI/ML research papers from arXiv. DocMind uses a 4-agent pipeline to retrieve, read, critique, and synthesize answers. **Agent Pipeline:** 🔍 Retriever → 📖 Reader → 🔎 Critic → ✨ Synthesizer """ ) with gr.Row(): with gr.Column(scale=7): chatbot = gr.Chatbot( label="Research Chat", height=550, type="messages", avatar_images=(None, "🧠"), bubble_full_width=False ) with gr.Row(): msg = gr.Textbox( label="", placeholder="Ask about recent research papers... (e.g., 'What are the latest methods for improving diffusion models?')", lines=2, scale=9, show_label=False ) submit = gr.Button("Send", variant="primary", scale=1, size="lg") with gr.Accordion("💡 Example Questions", open=False): gr.Examples( examples=examples, inputs=msg, label="" ) with gr.Column(scale=3): with gr.Group(): gr.Markdown("### ⚙️ Settings") num_papers = gr.Slider( minimum=1, maximum=10, value=5, step=1, label="Papers to Include", info="More papers = more comprehensive, but slower" ) show_logs = gr.Checkbox( label="Show Agent Logs", value=False, info="Display processing steps" ) clear = gr.Button("🗑️ Clear Chat", variant="secondary", size="sm") gr.Markdown( """ --- ### 📊 About **How it works:** 1. 🔍 **Retriever** finds relevant papers 2. 📖 **Reader** summarizes each paper 3. 🔎 **Critic** filters low-quality results 4. ✨ **Synthesizer** creates final answer **Data Source:** arXiv papers (AI/ML/CS) **Technology:** - FAISS for semantic search - Sentence Transformers for embeddings - 100 recent papers indexed """ ) # Chat interaction def respond(message, history, num_papers_val, show_logs_val): if not message.strip(): return history # Add user message history.append({"role": "user", "content": message}) # Get bot response bot_response = app.chat(message, history, num_papers_val, show_logs_val) # Add bot message history.append({"role": "assistant", "content": bot_response}) return history def clear_chat(): return [] # Event handlers submit.click( respond, inputs=[msg, chatbot, num_papers, show_logs], outputs=[chatbot] ).then( lambda: "", outputs=[msg] ) msg.submit( respond, inputs=[msg, chatbot, num_papers, show_logs], outputs=[chatbot] ).then( lambda: "", outputs=[msg] ) clear.click(clear_chat, outputs=[chatbot]) gr.Markdown( """
Built with FAISS, Sentence Transformers, and Gradio • Powered by arXiv API
""" ) return demo if __name__ == "__main__": demo = create_interface() demo.launch( share=False, server_name="127.0.0.1", # localhost instead of 0.0.0.0 server_port=7860, show_error=True )