File size: 6,496 Bytes
3a5fdfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
"""
DocMind - Utility Functions
Helper functions for the multi-agent system
"""
from typing import List, Dict
import re
from datetime import datetime
def clean_text(text: str) -> str:
"""Clean and normalize text"""
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters but keep basic punctuation
text = re.sub(r'[^\w\s.,!?;:()\-]', '', text)
return text.strip()
def truncate_text(text: str, max_length: int = 500) -> str:
"""Truncate text to maximum length, ending at sentence boundary"""
if len(text) <= max_length:
return text
# Find last sentence boundary before max_length
truncated = text[:max_length]
last_period = truncated.rfind('.')
if last_period > 0:
return truncated[:last_period + 1]
return truncated + "..."
def format_authors(authors: List[str], max_authors: int = 3) -> str:
"""Format author list for display"""
if len(authors) <= max_authors:
return ", ".join(authors)
else:
return ", ".join(authors[:max_authors]) + " et al."
def extract_year(date_string: str) -> int:
"""Extract year from date string"""
try:
if isinstance(date_string, str):
return int(date_string[:4])
return datetime.now().year
except:
return datetime.now().year
def score_recency(year: int, current_year: int = None) -> float:
"""
Score paper based on recency
Returns:
Score from 0-1, where 1 is most recent
"""
if current_year is None:
current_year = datetime.now().year
age = current_year - year
if age <= 0:
return 1.0
elif age <= 1:
return 0.9
elif age <= 2:
return 0.7
elif age <= 3:
return 0.5
else:
return max(0.3, 1.0 / (age + 1))
def combine_scores(
relevance: float,
recency: float,
quality: float,
weights: Dict[str, float] = None
) -> float:
"""
Combine multiple scores with weights
Args:
relevance: Relevance score (0-1)
recency: Recency score (0-1)
quality: Quality score (0-1)
weights: Dict with keys 'relevance', 'recency', 'quality'
Returns:
Combined score (0-1)
"""
if weights is None:
weights = {
'relevance': 0.6,
'recency': 0.2,
'quality': 0.2
}
return (
relevance * weights['relevance'] +
recency * weights['recency'] +
quality * weights['quality']
)
def deduplicate_papers(papers: List[Dict]) -> List[Dict]:
"""Remove duplicate papers based on arXiv ID"""
seen = set()
unique = []
for paper in papers:
paper_id = paper.get('arxiv_id', '')
if paper_id and paper_id not in seen:
seen.add(paper_id)
unique.append(paper)
return unique
def format_citation(paper: Dict, style: str = 'apa') -> str:
"""
Format paper citation
Args:
paper: Paper dict with title, authors, year, arxiv_id
style: Citation style ('apa', 'simple', 'markdown')
Returns:
Formatted citation string
"""
authors = format_authors(paper.get('authors', []))
title = paper.get('title', 'Unknown Title')
year = extract_year(paper.get('published', ''))
arxiv_id = paper.get('arxiv_id', '')
if style == 'apa':
return f"{authors} ({year}). {title}. arXiv:{arxiv_id}"
elif style == 'markdown':
return f"**{title}** - {authors} ({year}) - arXiv:[{arxiv_id}](https://arxiv.org/abs/{arxiv_id})"
else: # simple
return f"{title} ({arxiv_id}, {year})"
def extract_keywords(text: str, top_n: int = 5) -> List[str]:
"""
Extract simple keywords from text (frequency-based)
Args:
text: Input text
top_n: Number of keywords to return
Returns:
List of top keywords
"""
# Simple word frequency approach
# Remove common words
stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for',
'of', 'with', 'by', 'from', 'is', 'are', 'was', 'were', 'be', 'been',
'this', 'that', 'these', 'those', 'we', 'our', 'propose', 'show'
}
# Tokenize and count
words = re.findall(r'\b[a-z]{4,}\b', text.lower())
word_freq = {}
for word in words:
if word not in stop_words:
word_freq[word] = word_freq.get(word, 0) + 1
# Get top N
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
return [word for word, freq in sorted_words[:top_n]]
class ProgressTracker:
"""Simple progress tracker for multi-step processes"""
def __init__(self, total_steps: int):
self.total_steps = total_steps
self.current_step = 0
self.step_names = []
def next_step(self, step_name: str = None):
"""Move to next step"""
self.current_step += 1
if step_name:
self.step_names.append(step_name)
def get_progress(self) -> float:
"""Get progress as percentage"""
return (self.current_step / self.total_steps) * 100
def get_status(self) -> str:
"""Get status string"""
return f"Step {self.current_step}/{self.total_steps} ({self.get_progress():.1f}%)"
def validate_paper_dict(paper: Dict) -> bool:
"""Validate that paper dictionary has required fields"""
required_fields = ['title', 'abstract', 'arxiv_id', 'authors', 'published']
return all(field in paper for field in required_fields)
def safe_get(dictionary: Dict, key: str, default=None):
"""Safely get value from dictionary with fallback"""
try:
return dictionary.get(key, default)
except:
return default
# Example usage
if __name__ == "__main__":
# Test utilities
sample_paper = {
'title': 'Attention Is All You Need',
'authors': ['Vaswani', 'Shazeer', 'Parmar', 'Uszkoreit'],
'published': '2017-06-12',
'arxiv_id': '1706.03762',
'abstract': 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks...'
}
print("Citation (APA):", format_citation(sample_paper, 'apa'))
print("Citation (Markdown):", format_citation(sample_paper, 'markdown'))
print("Authors:", format_authors(sample_paper['authors']))
print("Recency score:", score_recency(2017))
print("Keywords:", extract_keywords(sample_paper['abstract'])) |