File size: 10,545 Bytes
422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 9515a7b 422c3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
"""
DocMind - Gradio Chat Interface
Multi-agent research assistant for arXiv papers
"""
import gradio as gr
from retriever import PaperRetriever
from agents import DocMindOrchestrator
from fetch_arxiv_data import ArxivFetcher
import os
class DocMindApp:
def __init__(self):
self.retriever = None
self.orchestrator = None
self.setup_system()
def setup_system(self):
"""Initialize retriever and load index"""
print("Initializing DocMind...")
# Initialize retriever
self.retriever = PaperRetriever()
# Try to load existing index
if not self.retriever.load_index():
print("No index found. Building new index...")
fetcher = ArxivFetcher()
papers = fetcher.load_papers("arxiv_papers.json")
if papers:
self.retriever.build_index(papers)
self.retriever.save_index()
print(f"Index built with {len(papers)} papers")
else:
print("β οΈ Warning: No papers found. Please run fetch_arxiv_data.py first")
return
# Initialize orchestrator
self.orchestrator = DocMindOrchestrator(self.retriever)
print("DocMind ready!")
def chat(
self,
message: str,
history: list,
num_papers: int = 5,
show_agent_logs: bool = True
) -> str:
"""
Process chat message
Args:
message: User query
history: Chat history (not used in current version)
num_papers: Number of papers to include in response
show_agent_logs: Whether to show agent processing logs
Returns:
Response string
"""
if not self.orchestrator:
return "β οΈ System not initialized. Please run fetch_arxiv_data.py to download papers first."
if not message.strip():
return "Please enter a question about research papers."
try:
# Process query through agent pipeline
response = self.orchestrator.process_query(
message,
top_k=num_papers * 2, # Retrieve more, filter to top N
max_papers_in_response=num_papers
)
return response
except Exception as e:
return f"β Error processing query: {str(e)}\n\nPlease try rephrasing your question."
def create_interface():
"""Create Gradio chat interface"""
app = DocMindApp()
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Inter', 'Segoe UI', sans-serif;
max-width: 1400px !important;
}
/* Header styling */
h1 {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-weight: 700;
font-size: 2.5em !important;
margin-bottom: 0.5em;
}
/* Chat area improvements */
.message-wrap {
padding: 1.2em !important;
margin: 0.8em 0 !important;
border-radius: 12px !important;
line-height: 1.6;
}
/* User message */
.message-wrap.user {
background: linear-gradient(135deg, #667eea15 0%, #764ba215 100%) !important;
border-left: 3px solid #667eea;
}
/* Bot message */
.message-wrap.bot {
background: #f8f9fa !important;
border-left: 3px solid #28a745;
}
/* Input area */
.input-text textarea {
border-radius: 12px !important;
border: 2px solid #e0e0e0 !important;
font-size: 1.05em !important;
}
.input-text textarea:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* Buttons */
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
border-radius: 10px !important;
padding: 0.8em 2em !important;
font-weight: 600 !important;
transition: transform 0.2s !important;
}
.btn-primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4) !important;
}
/* Settings panel */
.settings-panel {
background: #f8f9fa;
border-radius: 12px;
padding: 1.5em;
}
/* Slider */
input[type="range"] {
accent-color: #667eea !important;
}
/* Example buttons */
.examples button {
border-radius: 8px !important;
border: 2px solid #e0e0e0 !important;
padding: 0.7em 1em !important;
transition: all 0.2s !important;
}
.examples button:hover {
border-color: #667eea !important;
background: #667eea10 !important;
}
/* Code blocks in responses */
code {
background: #f4f4f4;
padding: 0.2em 0.4em;
border-radius: 4px;
font-family: 'Courier New', monospace;
}
/* Remove footer */
footer {
display: none !important;
}
/* Improve markdown rendering */
.markdown-body h2 {
color: #667eea;
border-bottom: 2px solid #667eea;
padding-bottom: 0.3em;
margin-top: 1.5em;
}
.markdown-body h3 {
color: #764ba2;
margin-top: 1.2em;
}
/* Better list styling */
.markdown-body ul {
line-height: 1.8;
}
.markdown-body li {
margin: 0.5em 0;
}
"""
# Example queries
examples = [
"What are the latest methods for improving diffusion models?",
"Summarize recent work on RLHF vs DPO for language model alignment",
"What are the main challenges in scaling transformer models?",
"Tell me about recent advances in vision transformers",
"What's new in retrieval-augmented generation (RAG)?",
]
with gr.Blocks(css=css, title="DocMind - arXiv Research Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π§ DocMind: Multi-Agent Research Assistant
Ask questions about recent AI/ML research papers from arXiv. DocMind uses a 4-agent pipeline to retrieve, read, critique, and synthesize answers.
**Agent Pipeline:** π Retriever β π Reader β π Critic β β¨ Synthesizer
"""
)
with gr.Row():
with gr.Column(scale=7):
chatbot = gr.Chatbot(
label="Research Chat",
height=550,
type="messages",
avatar_images=(None, "π§ "),
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
label="",
placeholder="Ask about recent research papers... (e.g., 'What are the latest methods for improving diffusion models?')",
lines=2,
scale=9,
show_label=False
)
submit = gr.Button("Send", variant="primary", scale=1, size="lg")
with gr.Accordion("π‘ Example Questions", open=False):
gr.Examples(
examples=examples,
inputs=msg,
label=""
)
with gr.Column(scale=3):
with gr.Group():
gr.Markdown("### βοΈ Settings")
num_papers = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Papers to Include",
info="More papers = more comprehensive, but slower"
)
show_logs = gr.Checkbox(
label="Show Agent Logs",
value=False,
info="Display processing steps"
)
clear = gr.Button("ποΈ Clear Chat", variant="secondary", size="sm")
gr.Markdown(
"""
---
### π About
**How it works:**
1. π **Retriever** finds relevant papers
2. π **Reader** summarizes each paper
3. π **Critic** filters low-quality results
4. β¨ **Synthesizer** creates final answer
**Data Source:** arXiv papers (AI/ML/CS)
**Technology:**
- FAISS for semantic search
- Sentence Transformers for embeddings
- 100 recent papers indexed
"""
)
# Chat interaction
def respond(message, history, num_papers_val, show_logs_val):
if not message.strip():
return history
# Add user message
history.append({"role": "user", "content": message})
# Get bot response
bot_response = app.chat(message, history, num_papers_val, show_logs_val)
# Add bot message
history.append({"role": "assistant", "content": bot_response})
return history
def clear_chat():
return []
# Event handlers
submit.click(
respond,
inputs=[msg, chatbot, num_papers, show_logs],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg]
)
msg.submit(
respond,
inputs=[msg, chatbot, num_papers, show_logs],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg]
)
clear.click(clear_chat, outputs=[chatbot])
gr.Markdown(
"""
<div style='text-align: center; margin-top: 2em; padding: 1em; color: #666;'>
<small>Built with FAISS, Sentence Transformers, and Gradio β’ Powered by arXiv API</small>
</div>
"""
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=False,
server_name="127.0.0.1", # localhost instead of 0.0.0.0
server_port=7860,
show_error=True
) |