Spaces:
Runtime error
Runtime error
dongyh20
commited on
Commit
·
745d2d6
1
Parent(s):
ae6b5e2
update space
Browse files- app.py +151 -60
- requirements.txt +27 -1
app.py
CHANGED
|
@@ -1,63 +1,154 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import re
|
| 4 |
+
from decord import VideoReader, cpu
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import transformers
|
| 8 |
+
from typing import Dict, Optional, Sequence, List
|
| 9 |
+
|
| 10 |
+
import sys
|
| 11 |
+
from oryx.conversation import conv_templates, SeparatorStyle
|
| 12 |
+
from oryx.model.builder import load_pretrained_model
|
| 13 |
+
from oryx.utils import disable_torch_init
|
| 14 |
+
from oryx.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video_genli
|
| 15 |
+
from oryx.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
model_path = "THUdyh/Oryx-7B"
|
| 19 |
+
model_name = get_model_name_from_path(model_path)
|
| 20 |
+
overwrite_config = {}
|
| 21 |
+
overwrite_config["mm_resampler_type"] = "dynamic_compressor"
|
| 22 |
+
overwrite_config["patchify_video_feature"] = False
|
| 23 |
+
overwrite_config["attn_implementation"] = "sdpa" if torch.__version__ >= "2.1.2" else "eager"
|
| 24 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, device_map="cuda:0", overwrite_config=overwrite_config)
|
| 25 |
+
model.to('cuda').eval()
|
| 26 |
+
|
| 27 |
+
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict:
|
| 28 |
+
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
|
| 29 |
+
|
| 30 |
+
im_start, im_end = tokenizer.additional_special_tokens_ids
|
| 31 |
+
nl_tokens = tokenizer("\n").input_ids
|
| 32 |
+
_system = tokenizer("system").input_ids + nl_tokens
|
| 33 |
+
_user = tokenizer("user").input_ids + nl_tokens
|
| 34 |
+
_assistant = tokenizer("assistant").input_ids + nl_tokens
|
| 35 |
+
|
| 36 |
+
# Apply prompt templates
|
| 37 |
+
input_ids, targets = [], []
|
| 38 |
+
|
| 39 |
+
source = sources
|
| 40 |
+
if roles[source[0]["from"]] != roles["human"]:
|
| 41 |
+
source = source[1:]
|
| 42 |
+
|
| 43 |
+
input_id, target = [], []
|
| 44 |
+
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
|
| 45 |
+
input_id += system
|
| 46 |
+
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens
|
| 47 |
+
assert len(input_id) == len(target)
|
| 48 |
+
for j, sentence in enumerate(source):
|
| 49 |
+
role = roles[sentence["from"]]
|
| 50 |
+
if has_image and sentence["value"] is not None and "<image>" in sentence["value"]:
|
| 51 |
+
num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"]))
|
| 52 |
+
texts = sentence["value"].split('<image>')
|
| 53 |
+
_input_id = tokenizer(role).input_ids + nl_tokens
|
| 54 |
+
for i,text in enumerate(texts):
|
| 55 |
+
_input_id += tokenizer(text).input_ids
|
| 56 |
+
if i<len(texts)-1:
|
| 57 |
+
_input_id += [IMAGE_TOKEN_INDEX] + nl_tokens
|
| 58 |
+
_input_id += [im_end] + nl_tokens
|
| 59 |
+
assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image
|
| 60 |
+
else:
|
| 61 |
+
if sentence["value"] is None:
|
| 62 |
+
_input_id = tokenizer(role).input_ids + nl_tokens
|
| 63 |
+
else:
|
| 64 |
+
_input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
|
| 65 |
+
input_id += _input_id
|
| 66 |
+
if role == "<|im_start|>user":
|
| 67 |
+
_target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens
|
| 68 |
+
elif role == "<|im_start|>assistant":
|
| 69 |
+
_target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens
|
| 70 |
+
else:
|
| 71 |
+
raise NotImplementedError
|
| 72 |
+
target += _target
|
| 73 |
+
|
| 74 |
+
input_ids.append(input_id)
|
| 75 |
+
targets.append(target)
|
| 76 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
| 77 |
+
targets = torch.tensor(targets, dtype=torch.long)
|
| 78 |
+
return input_ids
|
| 79 |
+
|
| 80 |
|
| 81 |
+
def oryx_inference(video, text):
|
| 82 |
+
vr = VideoReader(video, ctx=cpu(0))
|
| 83 |
+
total_frame_num = len(vr)
|
| 84 |
+
fps = round(vr.get_avg_fps())
|
| 85 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
|
| 86 |
+
frame_idx = uniform_sampled_frames.tolist()
|
| 87 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
| 88 |
+
video = [Image.fromarray(frame) for frame in spare_frames]
|
| 89 |
+
|
| 90 |
+
conv_mode = "qwen_1_5"
|
| 91 |
+
|
| 92 |
+
question = text
|
| 93 |
+
question = "<image>\n" + question
|
| 94 |
+
|
| 95 |
+
conv = conv_templates[conv_mode].copy()
|
| 96 |
+
conv.append_message(conv.roles[0], question)
|
| 97 |
+
conv.append_message(conv.roles[1], None)
|
| 98 |
+
prompt = conv.get_prompt()
|
| 99 |
+
|
| 100 |
+
input_ids = preprocess_qwen([{'from': 'human','value': question},{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda()
|
| 101 |
+
|
| 102 |
+
video_processed = []
|
| 103 |
+
for idx, frame in enumerate(video):
|
| 104 |
+
image_processor.do_resize = False
|
| 105 |
+
image_processor.do_center_crop = False
|
| 106 |
+
frame = process_anyres_video_genli(frame, image_processor)
|
| 107 |
+
|
| 108 |
+
if frame_idx is not None and idx in frame_idx:
|
| 109 |
+
video_processed.append(frame.unsqueeze(0))
|
| 110 |
+
elif frame_idx is None:
|
| 111 |
+
video_processed.append(frame.unsqueeze(0))
|
| 112 |
+
|
| 113 |
+
if frame_idx is None:
|
| 114 |
+
frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
|
| 115 |
+
|
| 116 |
+
video_processed = torch.cat(video_processed, dim=0).bfloat16().cuda()
|
| 117 |
+
video_processed = (video_processed, video_processed)
|
| 118 |
+
|
| 119 |
+
video_data = (video_processed, (384, 384), "video")
|
| 120 |
+
|
| 121 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 122 |
+
keywords = [stop_str]
|
| 123 |
+
|
| 124 |
+
with torch.inference_mode():
|
| 125 |
+
output_ids = model.generate(
|
| 126 |
+
inputs=input_ids,
|
| 127 |
+
images=video_data[0][0],
|
| 128 |
+
images_highres=video_data[0][1],
|
| 129 |
+
modalities=video_data[2],
|
| 130 |
+
do_sample=False,
|
| 131 |
+
temperature=0,
|
| 132 |
+
max_new_tokens=1024,
|
| 133 |
+
use_cache=True,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 138 |
+
outputs = outputs.strip()
|
| 139 |
+
if outputs.endswith(stop_str):
|
| 140 |
+
outputs = outputs[:-len(stop_str)]
|
| 141 |
+
outputs = outputs.strip()
|
| 142 |
+
return outputs
|
| 143 |
+
|
| 144 |
+
# Define input and output for the Gradio interface
|
| 145 |
+
demo = gr.Interface(
|
| 146 |
+
fn=oryx_inference,
|
| 147 |
+
inputs=[gr.Video(label="Input Video"), gr.Textbox(label="Input Text")],
|
| 148 |
+
outputs="text",
|
| 149 |
+
title="Oryx Inference",
|
| 150 |
+
description="This is a demo for Oryx inference."
|
| 151 |
+
)
|
| 152 |
|
| 153 |
+
# Launch the Gradio app
|
| 154 |
+
demo.launch(server_name="0.0.0.0",server_port=80)
|
requirements.txt
CHANGED
|
@@ -1 +1,27 @@
|
|
| 1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.22.2
|
| 2 |
+
torch
|
| 3 |
+
torchvision,
|
| 4 |
+
transformers==4.39.2
|
| 5 |
+
tokenizers==0.15.2
|
| 6 |
+
sentencepiece==0.1.99
|
| 7 |
+
shortuuid
|
| 8 |
+
accelerate==0.27.2
|
| 9 |
+
peft==0.4.0
|
| 10 |
+
bitsandbytes==0.41.0
|
| 11 |
+
pydantic<2,>=1
|
| 12 |
+
markdown2
|
| 13 |
+
numpy
|
| 14 |
+
scikit-learn==1.2.2
|
| 15 |
+
gradio==3.35.2
|
| 16 |
+
gradio_client==0.2.9
|
| 17 |
+
requests
|
| 18 |
+
httpx==0.24.0
|
| 19 |
+
uvicorn
|
| 20 |
+
fastapi
|
| 21 |
+
einops==0.6.1
|
| 22 |
+
einops-exts==0.0.4
|
| 23 |
+
timm==0.9.16
|
| 24 |
+
decord
|
| 25 |
+
ninja
|
| 26 |
+
deepspeed==0.12.2
|
| 27 |
+
protobuf
|