Update app.py
Browse files
app.py
CHANGED
|
@@ -17,6 +17,7 @@ st.set_page_config(layout="wide")
|
|
| 17 |
load_dotenv()
|
| 18 |
Groq_Token = os.environ["GROQ_API_KEY"]
|
| 19 |
hf_token = os.environ["HF_TOKEN"]
|
|
|
|
| 20 |
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it", "gemini-pro": "gemini-pro"}
|
| 21 |
|
| 22 |
self_path = os.path.dirname(os.path.abspath(__file__))
|
|
@@ -205,7 +206,10 @@ if prompt:
|
|
| 205 |
ran = False
|
| 206 |
for i in range(1):
|
| 207 |
print(f"Attempt {i+1}")
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
df_check = pd.read_csv("Data.csv")
|
| 211 |
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
|
@@ -263,10 +267,13 @@ import uuid
|
|
| 263 |
code = None
|
| 264 |
error = None
|
| 265 |
try:
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
| 267 |
code = f"""
|
| 268 |
{template.split("```python")[1].split("```")[0]}
|
| 269 |
-
{answer.
|
| 270 |
"""
|
| 271 |
# update variable `answer` when code is executed
|
| 272 |
exec(code)
|
|
|
|
| 17 |
load_dotenv()
|
| 18 |
Groq_Token = os.environ["GROQ_API_KEY"]
|
| 19 |
hf_token = os.environ["HF_TOKEN"]
|
| 20 |
+
gemini_token = os.environ["GEMINI_TOKEN"]
|
| 21 |
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it", "gemini-pro": "gemini-pro"}
|
| 22 |
|
| 23 |
self_path = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
| 206 |
ran = False
|
| 207 |
for i in range(1):
|
| 208 |
print(f"Attempt {i+1}")
|
| 209 |
+
if model_name == "gemini-pro":
|
| 210 |
+
llm = GoogleGenerativeAI(model=model, google_api_key=os.getenv("GEMINI_TOKEN"), temperature=0)
|
| 211 |
+
else:
|
| 212 |
+
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
|
| 213 |
|
| 214 |
df_check = pd.read_csv("Data.csv")
|
| 215 |
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
|
|
|
| 267 |
code = None
|
| 268 |
error = None
|
| 269 |
try:
|
| 270 |
+
if model_name == "gemini-pro":
|
| 271 |
+
answer = llm.invoke(query)
|
| 272 |
+
else:
|
| 273 |
+
answer = llm.invoke(query).content
|
| 274 |
code = f"""
|
| 275 |
{template.split("```python")[1].split("```")[0]}
|
| 276 |
+
{answer.split("```python")[1].split("```")[0]}
|
| 277 |
"""
|
| 278 |
# update variable `answer` when code is executed
|
| 279 |
exec(code)
|