Spaces:
Runtime error
Runtime error
| """ | |
| Copyright (c) Meta Platforms, Inc. and affiliates. | |
| All rights reserved. | |
| This source code is licensed under the license found in the | |
| LICENSE file in the root directory of this source tree. | |
| """ | |
| from tempfile import NamedTemporaryFile | |
| import argparse | |
| import torch | |
| import gradio as gr | |
| import os | |
| import subprocess | |
| import sys | |
| from pathlib import Path | |
| import time | |
| import typing as tp | |
| import warnings | |
| import gc | |
| from tqdm import tqdm | |
| from audiocraft.models import MusicGen | |
| from audiocraft.data.audio import audio_write | |
| from audiocraft.data.audio_utils import apply_fade, apply_tafade, apply_splice_effect | |
| from audiocraft.utils.extend import generate_music_segments, add_settings_to_image, INTERRUPTING | |
| from audiocraft.utils import utils | |
| import numpy as np | |
| import random | |
| import shutil | |
| from mutagen.mp4 import MP4 | |
| #from typing import List, Union | |
| import librosa | |
| import modules.user_history | |
| from modules.version_info import versions_html, commit_hash, get_xformers_version | |
| from modules.gradio import * | |
| from modules.file_utils import get_file_parts, get_filename_from_filepath, convert_title_to_filename, get_unique_file_path, delete_file, download_and_save_image, download_and_save_file | |
| from modules.constants import IS_SHARED_SPACE, HF_REPO_ID, TMPDIR, HF_API_TOKEN | |
| from modules.storage import upload_files_to_repo | |
| MODEL = None | |
| MODELS = None | |
| #IS_SHARED_SPACE = "Surn/UnlimitedMusicGen" in os.environ.get('SPACE_ID', '') | |
| INTERRUPTED = False | |
| UNLOAD_MODEL = False | |
| MOVE_TO_CPU = False | |
| MAX_PROMPT_INDEX = 0 | |
| git = os.environ.get('GIT', "git") | |
| #s.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,expandable_segments:True" | |
| os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
| os.environ['CUDA_MODULE_LOADING']='LAZY' | |
| os.environ['USE_FLASH_ATTENTION'] = '1' | |
| os.environ['XFORMERS_FORCE_DISABLE_TRITON']= '1' | |
| def interrupt_callback(): | |
| return INTERRUPTED | |
| def interrupt(): | |
| global INTERRUPTING | |
| INTERRUPTING = True | |
| class FileCleaner: | |
| def __init__(self, file_lifetime: float = 3600): | |
| self.file_lifetime = file_lifetime | |
| self.files = [] | |
| def add(self, path: tp.Union[str, Path]): | |
| self._cleanup() | |
| self.files.append((time.time(), Path(path))) | |
| def _cleanup(self): | |
| now = time.time() | |
| for time_added, path in list(self.files): | |
| if now - time_added > self.file_lifetime: | |
| if path.exists(): | |
| path.unlink() | |
| self.files.pop(0) | |
| else: | |
| break | |
| #file_cleaner = FileCleaner() | |
| def ping(): | |
| """ | |
| return the value true | |
| Returns: | |
| boolean: true | |
| """ | |
| return True | |
| def toggle_audio_src(choice): | |
| """ | |
| Toggle the audio input source between microphone and file upload. | |
| Args: | |
| choice (str): The selected audio source, either 'mic' or 'upload'. | |
| Returns: | |
| gr.Update: Gradio update object to change the audio input component. | |
| """ | |
| if choice == "mic": | |
| return gr.update(source="microphone", value=None, label="Microphone") | |
| else: | |
| return gr.update(source="upload", value=None, label="File") | |
| def get_waveform(*args, **kwargs): | |
| """ | |
| Generate a waveform video for the given audio input. | |
| Args: | |
| melody_filepath (str): Path to the melody audio file. | |
| Returns: | |
| tuple: (sample_rate, audio_data) loaded from the file. | |
| """ | |
| be = time.time() | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter('ignore') | |
| out = gr.make_waveform(*args, **kwargs) | |
| print("Make a video took", time.time() - be) | |
| return out | |
| def load_model(version, progress=gr.Progress(track_tqdm=True)): | |
| """ | |
| Load a MusicGen model by version name, optionally showing progress. | |
| Args: | |
| version (str): The model version to load. | |
| progress (gr.Progress, optional): Gradio progress tracker. | |
| Returns: | |
| MusicGen: The loaded MusicGen model instance. | |
| """ | |
| global MODEL, MODELS, UNLOAD_MODEL | |
| print("Loading model", version) | |
| with tqdm(total=100, desc=f"Loading model '{version}'", unit="step") as pbar: | |
| if MODELS is None: | |
| pbar.update(50) # Simulate progress for loading | |
| result = MusicGen.get_pretrained(version) | |
| pbar.update(50) # Complete progress | |
| return result | |
| else: | |
| t1 = time.monotonic() | |
| if MODEL is not None: | |
| MODEL.to('cpu') # Move to cache | |
| print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1)) | |
| pbar.update(30) # Simulate progress for moving model to CPU | |
| t1 = time.monotonic() | |
| if MODELS.get(version) is None: | |
| print("Loading model %s from disk" % version) | |
| result = MusicGen.get_pretrained(version) | |
| MODELS[version] = result | |
| print("Model loaded in %.2fs" % (time.monotonic() - t1)) | |
| pbar.update(70) # Simulate progress for loading from disk | |
| return result | |
| result = MODELS[version].to('cuda') | |
| print("Cached model loaded in %.2fs" % (time.monotonic() - t1)) | |
| pbar.update(100) # Complete progress | |
| return result | |
| def get_melody(melody_filepath): | |
| audio_data= list(librosa.load(melody_filepath, sr=None)) | |
| audio_data[0], audio_data[1] = audio_data[1], audio_data[0] | |
| melody = tuple(audio_data) | |
| return melody | |
| def git_tag(): | |
| """ | |
| Get the current git tag or fallback to the first line of CHANGELOG.md if unavailable. | |
| Returns: | |
| str: The current git tag or '<none>' if not available. | |
| """ | |
| try: | |
| return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip() | |
| except Exception: | |
| try: | |
| from pathlib import Path | |
| changelog_md = Path(__file__).parent.parent / "CHANGELOG.md" | |
| with changelog_md.open(encoding="utf-8") as file: | |
| return next((line.strip() for line in file if line.strip()), "<none>") | |
| except Exception: | |
| return "<none>" | |
| def load_background_filepath(video_orientation): | |
| """ | |
| Get the background image path based on video orientation. | |
| Args: | |
| video_orientation (str): Either 'Landscape' or 'Portrait'. | |
| Returns: | |
| str: Path to the background image file. | |
| """ | |
| if video_orientation == "Landscape": | |
| return "./assets/background.png" | |
| else: | |
| return "./assets/background_portrait.png" | |
| def load_melody_filepath(melody_filepath, title, assigned_model, topp, temperature, cfg_coef, segment_length = 30): | |
| """ | |
| Update melody-related UI fields based on the selected melody file and settings. | |
| Args: | |
| melody_filepath (str): Path to the melody file. | |
| title (str): The song title. | |
| assigned_model (str): The selected model name. | |
| topp (float): Top-p sampling value. | |
| temperature (float): Sampling temperature. | |
| cfg_coef (float): Classifier-free guidance coefficient. | |
| segment_length (int, optional): Segment length in seconds. | |
| Returns: | |
| tuple: Updated values for title, prompt_index, model, topp, temperature, cfg_coef, overlap. | |
| """ | |
| # get melody filename | |
| #$Union[str, os.PathLike] | |
| symbols = ['_', '.', '-'] | |
| MAX_OVERLAP = int(segment_length // 2) - 1 | |
| if (melody_filepath is None) or (melody_filepath == ""): | |
| return title, gr.update(maximum=0, value=-1) , gr.update(value="medium", interactive=True), gr.update(value=topp), gr.update(value=temperature), gr.update(value=cfg_coef), gr.update(maximum=MAX_OVERLAP) | |
| if (title is None) or ("MusicGen" in title) or (title == ""): | |
| melody_name, melody_extension = get_filename_from_filepath(melody_filepath) | |
| # fix melody name for symbols | |
| for symbol in symbols: | |
| melody_name = melody_name.replace(symbol, ' ').title() | |
| #additonal melody setting updates | |
| topp = 800 | |
| temperature = 0.5 | |
| cfg_coef = 3.25 | |
| else: | |
| melody_name = title | |
| if ("melody" not in assigned_model): | |
| assigned_model = "melody-large" | |
| print(f"Melody name: {melody_name}, Melody Filepath: {melody_filepath}, Model: {assigned_model}\n") | |
| # get melody length in number of segments and modify the UI | |
| melody = get_melody(melody_filepath) | |
| sr, melody_data = melody[0], melody[1] | |
| segment_samples = sr * segment_length | |
| total_melodys = max(min((len(melody_data) // segment_samples), 25), 0) | |
| print(f"Melody length: {len(melody_data)}, Melody segments: {total_melodys}\n") | |
| MAX_PROMPT_INDEX = total_melodys | |
| return gr.update(value=melody_name), gr.update(maximum=MAX_PROMPT_INDEX, value=-1), gr.update(value=assigned_model, interactive=True), gr.update(value=topp), gr.update(value=temperature), gr.update(value=cfg_coef), gr.update(maximum=MAX_OVERLAP) | |
| def predict(model, text, melody_filepath = None, duration=10, dimension=2, topk=200, topp=0, temperature=1.0, cfg_coef=4.0, background = None, title="UnlimitedMusicGen", settings_font="./assets/arial.ttf", settings_font_color = "#c87f05", seed=-1, overlap=1, prompt_index = 0, include_title = True, include_settings = True, harmony_only = False, profile = gr.OAuthProfile, segment_length = 30, settings_font_size=28, settings_animate_waveform=False, video_orientation="Landscape", excerpt_duration=3.5, return_history_json=False, progress=gr.Progress(track_tqdm=True)): | |
| """ | |
| Generate music and video based on the provided parameters and model. | |
| Args: | |
| model (str): Model name to use for generation. Default to "style" | |
| text (str): Prompt describing the music. | |
| melody_filepath (str, optional): Path to melody conditioning file. Default to None. | |
| duration (int): Total duration in seconds. | |
| dimension (int): Audio stacking/concatenation dimension. | |
| topk (int): Top-k sampling value. | |
| topp (float): Top-p sampling value. | |
| temperature (float): Sampling temperature. | |
| cfg_coef (float): Classifier-free guidance coefficient. | |
| background (str, optional): Path to background image. Default to "./assets/background.png". | |
| title (str, optional): Song title. Default to "UnlimitedMusicGen". | |
| settings_font (str, optional): Path to font file. Default to "./assets/arial.ttf". | |
| settings_font_color (str, optional): Font color for settings text. Default to " | |
| seed (int, optional): Random seed. Default to -1. | |
| overlap (int, optional): Segment overlap in seconds. Default to 1. | |
| prompt_index (int, optional): Melody segment index. Default to 0. | |
| include_title (bool, optional): Whether to add title to video. Default to True. | |
| include_settings (bool, optional): Whether to add settings to video. Default to True. | |
| harmony_only (bool, optional): Whether to use harmony only. Default to False. | |
| profile (gr.OAuthProfile): User profile. | |
| segment_length (int, optional): Segment length in seconds. | |
| settings_font_size (int, optional): Font size for settings text. | |
| settings_animate_waveform (bool, optional): Animate waveform in video. | |
| video_orientation (str, optional): Video orientation. | |
| excerpt_duration (float, optional): Excerpt duration for style conditioning. | |
| return_history_json (bool, optional): Whether to return history JSON instead of typical output. Default to False. | |
| progress (gr.Progress, optional): Gradio progress tracker. | |
| Returns: | |
| tuple(str,str,str): (waveform_video_path, wave_file_path, seed_used) | |
| """ | |
| global MODEL, INTERRUPTED, INTERRUPTING, MOVE_TO_CPU | |
| output_segments = None | |
| melody_name = "Not Used" | |
| melody_extension = "Not Used" | |
| melody = None | |
| if melody_filepath in ["None", ""]: | |
| melody_filepath = None | |
| # if melody_filepath is a url string, download it using download_and_save_file | |
| if melody_filepath and melody_filepath.startswith(("http://", "https://")): | |
| username = profile if isinstance(profile, str) else profile.value.username if hasattr(profile.value, 'username') else "default_user" if (profile is None) else profile | |
| melody_filepath = download_and_save_file(melody_filepath, Path(TMPDIR) / str(username), HF_API_TOKEN) | |
| #if background is a url string, download it using download_and_save_image | |
| if background is None or background in ["None", ""]: | |
| background = load_background_filepath(video_orientation) | |
| if background.startswith(("http://", "https://")): | |
| username = profile if isinstance(profile, str) else profile.value.username if hasattr(profile.value, 'username') else "default_user" if (profile is None) else profile | |
| background = download_and_save_image(background, Path(TMPDIR) / str(username), HF_API_TOKEN) | |
| if melody_filepath: | |
| melody_name, melody_extension = get_filename_from_filepath(melody_filepath) | |
| melody = get_melody(melody_filepath) | |
| INTERRUPTED = False | |
| INTERRUPTING = False | |
| if temperature < 0: | |
| temperature = 0.1 | |
| raise gr.Error("Temperature must be >= 0.") | |
| if topk < 0: | |
| topk = 1 | |
| raise gr.Error("Topk must be non-negative.") | |
| if topp < 0: | |
| topp =1 | |
| raise gr.Error("Topp must be non-negative.") | |
| # Clean up GPU resources only if the model changes | |
| if MODEL is not None and model not in MODEL.name: | |
| print(f"Switching model from {MODEL.name} to {model}. Cleaning up resources.") | |
| del MODEL # Delete the current model | |
| torch.cuda.empty_cache() # Clear GPU memory | |
| gc.collect() # Force garbage collection | |
| MODEL = None | |
| try: | |
| if MODEL is None or model not in MODEL.name: | |
| MODEL = load_model(model) | |
| else: | |
| if MOVE_TO_CPU: | |
| MODEL.to('cuda') | |
| except Exception as e: | |
| raise gr.Error(f"Error loading model '{model}': {str(e)}. Try a different model.") | |
| # prevent hacking | |
| duration = min(duration, 720) | |
| overlap = min(overlap, 15) | |
| # | |
| output = None | |
| segment_duration = duration | |
| initial_duration = duration | |
| output_segments = [] | |
| while duration > 0: | |
| if not output_segments: # first pass of long or short song | |
| if segment_duration > MODEL.lm.cfg.dataset.segment_duration: | |
| segment_duration = MODEL.lm.cfg.dataset.segment_duration | |
| else: | |
| segment_duration = duration | |
| else: # next pass of long song | |
| if duration + overlap < MODEL.lm.cfg.dataset.segment_duration: | |
| segment_duration = duration + overlap | |
| else: | |
| segment_duration = MODEL.lm.cfg.dataset.segment_duration | |
| if (segment_length + overlap) < segment_duration: | |
| segment_duration = segment_length + overlap | |
| # implement seed | |
| if seed < 0: | |
| seed = random.randint(0, 0xffff_ffff_ffff) | |
| torch.manual_seed(seed) | |
| print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}') | |
| if ("style" in model) and melody: | |
| # style and text-to-music | |
| MODEL.set_generation_params( | |
| use_sampling=True, | |
| top_k=topk, | |
| top_p=topp, | |
| temperature=temperature, | |
| cfg_coef=cfg_coef, | |
| duration=segment_duration, | |
| two_step_cfg=False, | |
| cfg_coef_beta=5, # double CFG is only useful for text-and-style conditioning | |
| ) | |
| MODEL.set_style_conditioner_params( | |
| eval_q=3, # integer between 1 and 6 | |
| # eval_q is the level of quantization that passes | |
| # through the conditioner. When low, the models adheres less to the | |
| # audio conditioning | |
| excerpt_length=excerpt_duration, # the length in seconds that is taken by the model in the provided excerpt, can be | |
| # between 1.5 and 4.5 seconds but it has to be shortest to the length of the provided conditioning | |
| ) | |
| else: | |
| MODEL.set_generation_params( | |
| use_sampling=True, | |
| top_k=topk, | |
| top_p=topp, | |
| temperature=temperature, | |
| cfg_coef=cfg_coef, | |
| duration=segment_duration, | |
| two_step_cfg=False, | |
| extend_stride=2, | |
| rep_penalty=0.5, | |
| cfg_coef_beta=None, # double CFG is only useful for text-and-style conditioning | |
| ) | |
| MODEL.set_custom_progress_callback(gr.Progress(track_tqdm=True)) | |
| try: | |
| if melody and ("melody" or "style" in model): | |
| # return excess duration, load next model and continue in loop structure building up output_segments | |
| if duration > MODEL.duration: | |
| output_segments, duration = generate_music_segments(text, melody, seed, MODEL, duration, overlap, MODEL.duration, prompt_index, harmony_only, excerpt_duration, progress=gr.Progress(track_tqdm=True)) | |
| else: | |
| # pure original code | |
| sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0) | |
| print(melody.shape) | |
| if melody.dim() == 2: | |
| melody = melody[None] | |
| melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)] | |
| output = MODEL.generate_with_chroma( | |
| descriptions=[text], | |
| melody_wavs=melody, | |
| melody_sample_rate=sr, | |
| progress=False, progress_callback=gr.Progress(track_tqdm=True) | |
| ) | |
| # All output_segments are populated, so we can break the loop or set duration to 0 | |
| break | |
| else: | |
| #output = MODEL.generate(descriptions=[text], progress=False) | |
| if not output_segments: | |
| next_segment = MODEL.generate(descriptions=[text], progress=False, progress_callback=gr.Progress(track_tqdm=True)) | |
| duration -= segment_duration | |
| else: | |
| last_chunk = output_segments[-1][:, :, -overlap*MODEL.sample_rate:] | |
| next_segment = MODEL.generate_continuation(last_chunk, MODEL.sample_rate, descriptions=[text], progress=False, progress_callback=gr.Progress(track_tqdm=True)) | |
| duration -= segment_duration - overlap | |
| if next_segment != None: | |
| output_segments.append(next_segment) | |
| except Exception as e: | |
| print(f"Error generating audio: {e}") | |
| gr.Error(f"Error generating audio: {e}") | |
| return None, None, seed | |
| if INTERRUPTING: | |
| INTERRUPTED = True | |
| INTERRUPTING = False | |
| print("Function execution interrupted!") | |
| raise gr.Error("Interrupted.") | |
| print(f"\nOutput segments: {len(output_segments)}\n") | |
| if output_segments: | |
| try: | |
| # Combine the output segments into one long audio file or stack tracks | |
| #output_segments = [segment.detach().cpu().float()[0] for segment in output_segments] | |
| #output = torch.cat(output_segments, dim=dimension) | |
| output = output_segments[0] | |
| for i in range(1, len(output_segments)): | |
| if overlap > 0: | |
| overlap_samples = overlap * MODEL.sample_rate | |
| #stack tracks and fade out/in | |
| overlapping_output_fadeout = output[:, :, -overlap_samples:] | |
| #overlapping_output_fadeout = apply_fade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True, curve_end=0.0, current_device=MODEL.device) | |
| overlapping_output_fadeout = apply_tafade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True,shape="linear") | |
| overlapping_output_fadein = output_segments[i][:, :, :overlap_samples] | |
| #overlapping_output_fadein = apply_fade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, curve_start=0.0, current_device=MODEL.device) | |
| overlapping_output_fadein = apply_tafade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, shape="linear") | |
| overlapping_output = torch.cat([overlapping_output_fadeout[:, :, :-(overlap_samples // 2)], overlapping_output_fadein],dim=2) | |
| ###overlapping_output, overlap_sample_rate = apply_splice_effect(overlapping_output_fadeout, MODEL.sample_rate, overlapping_output_fadein, MODEL.sample_rate, overlap) | |
| print(f" overlap size Fade:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}") | |
| ##overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=1) #stack tracks | |
| ##print(f" overlap size stack:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}") | |
| #overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=2) #stack tracks | |
| #print(f" overlap size cat:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}") | |
| output = torch.cat([output[:, :, :-overlap_samples], overlapping_output, output_segments[i][:, :, overlap_samples:]], dim=dimension) | |
| else: | |
| output = torch.cat([output, output_segments[i]], dim=dimension) | |
| output = output.detach().cpu().float()[0] | |
| except Exception as e: | |
| print(f"Error combining segments: {e}. Using the first segment only.") | |
| output = output_segments[0].detach().cpu().float()[0] | |
| else: | |
| if (output is None) or (output.dim() == 0): | |
| return None, None, seed | |
| else: | |
| output = output.detach().cpu().float()[0] | |
| video_width, video_height = 768, 512 | |
| if video_orientation == "Portrait": | |
| video_width, video_height = 512, 768 | |
| title_file_name = convert_title_to_filename(title) | |
| with NamedTemporaryFile("wb", suffix=".wav", delete=False, prefix=title_file_name) as file: | |
| video_description = f"{text}\n Duration: {str(initial_duration)} Dimension: {dimension}\n Top-k:{topk} Top-p:{topp}\n Randomness:{temperature}\n cfg:{cfg_coef} overlap: {overlap}\n Seed: {seed}\n Model: {model}\n Melody Condition:{melody_name}\n Sample Segment: {prompt_index}" | |
| if include_settings or include_title: | |
| background = add_settings_to_image(title if include_title else "",video_description if include_settings else "",width=video_width, height=video_height, background_path=background,font=settings_font,font_color=settings_font_color, font_size=settings_font_size) | |
| audio_write( | |
| file.name, output, MODEL.sample_rate, strategy="loudness", | |
| loudness_headroom_db=18, loudness_compressor=True, add_suffix=False, channels=2) | |
| waveform_video_path = get_waveform(file.name, bg_image=background, bar_count=45, name=title_file_name, animate=settings_animate_waveform, progress=gr.Progress(track_tqdm=True)) | |
| # Remove the extension from file.name | |
| file_name_without_extension = os.path.splitext(file.name)[0] | |
| # Get the directory, filename, name, extension, and new extension of the waveform video path | |
| video_dir, video_name, video_name, video_ext, video_new_ext = get_file_parts(waveform_video_path) | |
| new_video_path = get_unique_file_path(video_dir, title_file_name, video_new_ext) | |
| mp4 = MP4(waveform_video_path) | |
| mp4["©nam"] = title_file_name # Title tag | |
| mp4["desc"] = f"{text}\n Duration: {str(initial_duration)}" # Description tag | |
| commit = commit_hash() | |
| metadata = { | |
| "Title": title, | |
| "Year": time.strftime("%Y"), | |
| "prompt": text, | |
| "negative_prompt": "", | |
| "Seed": seed, | |
| "steps": 1, | |
| "wdth": video_width, | |
| "hght": video_height, | |
| "Dimension": dimension, | |
| "Top-k": topk, | |
| "Top-p": topp, | |
| "Randomness": temperature, | |
| "cfg": cfg_coef, | |
| "overlap": overlap, | |
| "Melody Condition": melody_name, | |
| "Sample Segment": prompt_index, | |
| "Duration": initial_duration, | |
| "Audio": file.name, | |
| "font": settings_font, | |
| "font_color": settings_font_color, | |
| "font_size": settings_font_size, | |
| "harmony_only": harmony_only, | |
| "background": background, | |
| "include_title": include_title, | |
| "include_settings": include_settings, | |
| "profile": profile.value.username if hasattr(profile, 'value') and hasattr(profile.value, 'username') else "default_user" if (profile is None) else profile, | |
| "commit": commit_hash(), | |
| "tag": git_tag(), | |
| "version": gr.__version__, | |
| "model_version": MODEL.version, | |
| "model_name": MODEL.name, | |
| "model_description": f"{MODEL.audio_channels} channels, {MODEL.sample_rate} Hz", | |
| "melody_name": melody_name if melody_name else "", | |
| "melody_extension": melody_extension if melody_extension else "", | |
| "hostname": "https://huggingface.co/spaces/Surn/UnlimitedMusicGen", | |
| "version": f"https://huggingface.co/spaces/Surn/UnlimitedMusicGen/commit/{'huggingface' if commit == '<none>' else commit}", | |
| "python": sys.version, | |
| "torch": getattr(torch, '__long_version__', torch.__version__), | |
| "xformers": get_xformers_version(), | |
| "gradio": gr.__version__, | |
| "huggingface_space": os.environ.get('SPACE_ID', ''), | |
| "CUDA": f"{'CUDA is available. device: ' + torch.cuda.get_device_name(0) + ' version: ' + torch.version.cuda if torch.cuda.is_available() else 'CUDA is not available.'}", | |
| } | |
| # Add additional metadata from the metadata dictionary (if it exists) | |
| for key, value in metadata.items(): | |
| mp4[key] = str(value) # Convert values to strings as required by mutagen | |
| # Save the metadata changes to the file | |
| mp4.save() | |
| try: | |
| os.replace(waveform_video_path, new_video_path) | |
| waveform_video_path = new_video_path | |
| except Exception as e: | |
| print(f"Error renaming file: {e}") | |
| if waveform_video_path: | |
| history_results = modules.user_history.save_file( | |
| profile=profile.value.username if hasattr(profile, 'value') and hasattr(profile.value, 'username') else "default_user" if (profile is None) else profile, | |
| image=background, | |
| audio=file.name, | |
| video=waveform_video_path, | |
| label=title, | |
| metadata=metadata, | |
| progress=gr.Progress(track_tqdm=True) | |
| ) | |
| if MOVE_TO_CPU: | |
| MODEL.to('cpu') | |
| if UNLOAD_MODEL: | |
| MODEL = None | |
| # Explicitly delete large tensors or objects | |
| del output_segments, output, melody, melody_name, melody_extension, metadata, mp4 | |
| # Force garbage collection | |
| #gc.collect() | |
| # Synchronize CUDA streams | |
| torch.cuda.synchronize() | |
| #torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| if return_history_json: | |
| return history_results | |
| else: | |
| return waveform_video_path, file.name, seed | |
| def fix_path(path: str) -> str: | |
| """ | |
| Strips all characters preceding '_user_history' in the given path and replaces them with "./". | |
| If the substring '_user_history' is not found, returns the original path. | |
| Args: | |
| path (str): The input file path. | |
| Returns: | |
| str: The modified file path. | |
| """ | |
| index = path.find("_user_history") | |
| if index != -1: | |
| return "./" + path[index:].replace("\\", "/") | |
| return path | |
| # Add this wrapper function above the gr.api definitions | |
| def predict_simple(model: str, text: str, melody_filepath: str = None, duration: int = 10, dimension: int = 2, topk: int = 200, topp: float = 0.01, temperature: float = 1.0, cfg_coef: float = 4.0, background: str = "./assets/background.png", title: str = "UnlimitedMusicGen", settings_font: str = "./assets/arial.ttf", settings_font_color: str = "#c87f05", seed: int = -1, overlap: int = 1, prompt_index: int = -1, include_title: bool = True, include_settings: bool = True, harmony_only: bool = False, profile: str = "Satoshi Nakamoto", segment_length: int = 30, settings_font_size: int = 28, settings_animate_waveform: bool = False, video_orientation: str = "Landscape", return_history_json: bool = False) -> tp.List[tp.Tuple[str, str, str]]: | |
| """ | |
| Generate music and video based on the provided parameters and model. | |
| Args: | |
| model (str): Model name to use for generation. | |
| text (str): Prompt describing the music. | |
| melody_filepath (str, optional): Path to melody conditioning file. Default to None. | |
| duration (int): Total duration in seconds. | |
| dimension (int): Audio stacking/concatenation dimension. | |
| topk (int): Top-k sampling value. | |
| topp (float): Top-p sampling value. | |
| temperature (float): Sampling temperature. | |
| cfg_coef (float): Classifier-free guidance coefficient. | |
| background (str, optional): Path to background image. Default to "./assets/background.png". | |
| title (str, optional): Song title. Default to "UnlimitedMusicGen". | |
| settings_font (str, optional): Path to font file. Default to "./assets/arial.ttf". | |
| settings_font_color (str, optional): Font color for settings text. Default to " | |
| seed (int, optional): Random seed. Default to -1. | |
| overlap (int, optional): Segment overlap in seconds. Default to 1. | |
| prompt_index (int, optional): Melody segment index. Default to -1. | |
| include_title (bool, optional): Whether to add title to video. Default to True. | |
| include_settings (bool, optional): Whether to add settings to video. Default to True. | |
| harmony_only (bool, optional): Whether to use harmony only. Default to False. | |
| profile (str, optional): User profile. | |
| segment_length (int, optional): Segment length in seconds. | |
| settings_font_size (int, optional): Font size for settings text. | |
| settings_animate_waveform (bool, optional): Animate waveform in video. | |
| video_orientation (str, optional): Video orientation | |
| return_history_json (bool, optional): Return history JSON instead of typical output. Default to False. | |
| Returns: | |
| tp.List[tp.Tuple[str, str, str]]: [waveform_video_path, wave_file_path, seed_used] | |
| """ | |
| profile_username_to_send = "default_user" | |
| if not profile: | |
| profile = modules.user_history.get_profile | |
| if profile: | |
| actual_profile_data = profile | |
| # Unwrap if it's a gr.State object | |
| if hasattr(profile, 'value') and profile.value is not None: | |
| actual_profile_data = profile.value | |
| # Now actual_profile_data is either an OAuthProfile or a string username | |
| if hasattr(actual_profile_data, 'username') and actual_profile_data.username: # OAuthProfile | |
| profile_username_to_send = actual_profile_data.username | |
| elif isinstance(actual_profile_data, str) and actual_profile_data: # string username | |
| profile_username_to_send = actual_profile_data | |
| UMG_result = predict(model, text, melody_filepath=melody_filepath, duration=duration, dimension=dimension, topk=topk, topp=topp, temperature=temperature, cfg_coef=cfg_coef, background=background, title=title, settings_font=settings_font, settings_font_color=settings_font_color, seed=seed, overlap=overlap, prompt_index=prompt_index, include_title=include_title, include_settings=include_settings, harmony_only=harmony_only, profile=profile, segment_length=segment_length, settings_font_size=settings_font_size, settings_animate_waveform=settings_animate_waveform, video_orientation=video_orientation, excerpt_duration=3.5, return_history_json=return_history_json) | |
| # upload to storage and return urls | |
| folder_name = f"user_uploads/{convert_title_to_filename(profile_username_to_send)}/{convert_title_to_filename(title)}" | |
| if return_history_json: | |
| # use modules.storage.upload_files_to_repo to get urls for image_path, video_path, audio_path | |
| upload_result = upload_files_to_repo( | |
| files=[UMG_result["video_path"],UMG_result["audio_path"], UMG_result["image_path"]], | |
| repo_id=HF_REPO_ID, # constants.py value of dataset repo | |
| folder_name=f"{folder_name}/{UMG_result['metadata']['Seed']}/{time.strftime('%Y%m%d%H%M%S')}", | |
| create_permalink=False, | |
| repo_type="dataset" | |
| ) | |
| if upload_result: | |
| UMG_result["video_path"] = upload_result[0][1] # Assuming [(response, link) for link in individual_links] | |
| UMG_result["audio_path"] = upload_result[1][1] | |
| UMG_result["image_path"] = upload_result[2][1] | |
| content = UMG_result["video_path"], UMG_result["audio_path"], UMG_result["metadata"]["Seed"] | |
| UMG_result = content | |
| else: | |
| # use modules.storage.upload_files_to_repo to get urls for video_path, audio_path | |
| upload_result = upload_files_to_repo( | |
| files=[UMG_result[0],UMG_result[1]], | |
| repo_id=HF_REPO_ID, # constants.py value of dataset repo | |
| folder_name=f"{folder_name}/{UMG_result[2]}/{time.strftime('%Y%m%d%H%M%S')}", | |
| create_permalink=False, | |
| repo_type="dataset" | |
| ) | |
| if upload_result: | |
| UMG_result = upload_result[0][1], upload_result[1][1], UMG_result[2] | |
| return UMG_result | |
| gr.set_static_paths(paths=["fonts/","assets/","images/"]) | |
| def ui(**kwargs): | |
| with gr.Blocks(title="UnlimitedMusicGen", css_paths="style_20250331.css", theme='Surn/beeuty') as demo: | |
| with gr.Tab("UnlimitedMusicGen"): | |
| gr.Markdown( | |
| """ | |
| # UnlimitedMusicGen | |
| This is your private demo for [UnlimitedMusicGen](https://github.com/Oncorporation/audiocraft), a simple and controllable model for music generation | |
| presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) | |
| Disclaimer: This won't run on CPU only. Clone this App and run on GPU instance! | |
| Todo: Working on improved Interrupt. | |
| Theme Available at ["Surn/Beeuty"](https://huggingface.co/spaces/Surn/Beeuty) | |
| """ | |
| ) | |
| if IS_SHARED_SPACE and not torch.cuda.is_available(): | |
| gr.Markdown(""" | |
| ⚠ This Space doesn't work in this shared UI ⚠ | |
| <a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
| <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| text = gr.Text(label="Describe your music", interactive=True, value="4/4 100bpm 320kbps 32khz, Industrial/Electronic Soundtrack, Dark, Intense, Sci-Fi, soft fade-in, soft fade-out", key="prompt", lines=4) | |
| autoplay_cb = gr.Checkbox(value=False, label="Autoplay?", key="autoplay_cb") | |
| with gr.Column(): | |
| duration = gr.Slider(minimum=1, maximum=720, value=10, label="Duration (s)", interactive=True, key="total_duration", step=1) | |
| model = gr.Radio(["melody", "medium", "small", "large", "melody-large", "stereo-small", "stereo-medium", "stereo-large", "stereo-melody", "stereo-melody-large", "style"], label="AI Model", value="medium", interactive=True, key="chosen_model") | |
| with gr.Row(): | |
| submit = gr.Button("Generate", elem_id="btn-generate") | |
| # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. | |
| _ = gr.Button("Interrupt", elem_id="btn-interrupt").click(fn=interrupt, queue=False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic") | |
| melody_filepath = gr.Audio(value=None,sources=["upload"], type="filepath", label="Melody Condition (optional)", interactive=True, elem_id="melody-input", key="melody_input") | |
| with gr.Column(): | |
| harmony_only = gr.Radio(label="Use Harmony Only",choices=["No", "Yes"], value="No", interactive=True, info="Remove Drums?", key="use_harmony") | |
| prompt_index = gr.Slider(label="Melody Condition Sample Segment", minimum=-1, maximum=MAX_PROMPT_INDEX, step=1, value=-1, interactive=True, info="Which 10-30 second segment to condition with, - 1 = align with conditioning melody", key="melody_index") | |
| with gr.Accordion("Video", open=False): | |
| with gr.Row(): | |
| background= gr.Image(value="./assets/background.png", sources=["upload"], label="Background", width=768, height=512, type="filepath", interactive=True, key="background_imagepath") | |
| with gr.Column(): | |
| include_title = gr.Checkbox(label="Add Title", value=True, interactive=True,key="add_title") | |
| include_settings = gr.Checkbox(label="Add Settings to background", value=True, interactive=True, key="add_settings") | |
| video_orientation = gr.Radio(label="Video Orientation", choices=["Landscape", "Portrait"], value="Landscape", interactive=True, key="video_orientation") | |
| with gr.Row(): | |
| title = gr.Textbox(label="Title", value="UnlimitedMusicGen", interactive=True, key="song_title") | |
| settings_font = gr.Text(label="Settings Font", value="./assets/arial.ttf", interactive=True) | |
| settings_font_color = gr.ColorPicker(label="Settings Font Color", value="#c87f05", interactive=True, key="settings_font_color") | |
| settings_font_size = gr.Slider(minimum=8, maximum=64, value=28, step=1, label="Settings Font Size", interactive=True, key="settings_font_size") | |
| settings_animate_waveform = gr.Checkbox(label="Animate Waveform", value=False, interactive=True, key="animate_waveform") | |
| with gr.Accordion("Expert", open=False): | |
| with gr.Row(): | |
| segment_length = gr.Slider(minimum=10, maximum=30, value=30, step=1,label="Music Generation Segment Length (s)", interactive=True,key="segment_length") | |
| overlap = gr.Slider(minimum=0, maximum=14, value=1, step=1, label="Segment Overlap", interactive=True) | |
| dimension = gr.Slider(minimum=-2, maximum=2, value=2, step=1, label="Dimension", info="determines which direction to add new segements of audio. (1 = stack tracks, 2 = lengthen, -2..0 = ?)", interactive=True) | |
| with gr.Row(): | |
| topk = gr.Number(label="Top-k", value=280, precision=0, interactive=True, info="more structured", key="topk") | |
| topp = gr.Number(label="Top-p", value=1150, precision=0, interactive=True, info="more variation, overwrites Top-k if not zero", key="topp") | |
| temperature = gr.Number(label="Randomness Temperature", value=0.7, precision=None, step=0.1, interactive=True, info="less than one to follow Melody Condition song closely", key="temperature") | |
| cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.75, precision=None, step=0.1, interactive=True, info="3.0-4.0, stereo and small need more", key="cfg_coef") | |
| with gr.Row(): | |
| seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True, key="seed") | |
| gr.Button('\U0001f3b2\ufe0f', elem_classes="small-btn").click(fn=lambda: -1, outputs=[seed], queue=False) | |
| reuse_seed = gr.Button('\u267b\ufe0f', elem_classes="small-btn") | |
| with gr.Column() as c: | |
| output = gr.Video(label="Generated Music", interactive=False, show_download_button=True, show_share_button=True, autoplay=False) | |
| wave_file = gr.File(label=".wav file", elem_id="output_wavefile", interactive=True) | |
| seed_used = gr.Number(label='Seed used', value=-1, interactive=False) | |
| radio.change(toggle_audio_src, radio, [melody_filepath], queue=False, show_progress=False, api_name="audio_src_change") | |
| video_orientation.change(load_background_filepath, inputs=[video_orientation], outputs=[background], queue=False, show_progress=False, api_name="video_orientation_change") | |
| melody_filepath.change(load_melody_filepath, inputs=[melody_filepath, title, model,topp, temperature, cfg_coef, segment_length], outputs=[title, prompt_index , model, topp, temperature, cfg_coef, overlap], api_name="melody_filepath_change", queue=False) | |
| reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False, api_name="reuse_seed_click") | |
| autoplay_cb.change(fn=lambda x: gr.update(autoplay=x), inputs=[autoplay_cb], outputs=[output], queue=False, api_name="autoplay_cb_change") | |
| segment_length.release(fn=load_melody_filepath, queue=False, api_name="segment_length_change", trigger_mode="once", inputs=[melody_filepath, title, model,topp, temperature, cfg_coef, segment_length], outputs=[title, prompt_index , model, topp, temperature, cfg_coef, overlap], show_progress="minimal") | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "4/4 120bpm 320kbps 32khz, An 80s driving pop song with heavy drums and synth pads in the background", | |
| "./assets/bach.mp3", | |
| "melody", | |
| "80s Pop Synth", | |
| 950, | |
| 0.6, | |
| 3.5 | |
| ], | |
| [ | |
| "4/4 120bpm 320kbps 32khz, A cheerful country song with acoustic guitars", | |
| "./assets/bolero_ravel.mp3", | |
| "stereo-melody-large", | |
| "Country Guitar", | |
| 750, | |
| 0.7, | |
| 4.0 | |
| ], | |
| [ | |
| "4/4 120bpm 320kbps 32khz, 90s rock song with electric guitar and heavy drums", | |
| None, | |
| "stereo-medium", | |
| "90s Rock Guitar", | |
| 1150, | |
| 0.7, | |
| 3.75 | |
| ], | |
| [ | |
| "4/4 120bpm 320kbps 32khz, a light and cheery EDM track, with syncopated drums, aery pads, and strong emotions", | |
| "./assets/bach.mp3", | |
| "melody-large", | |
| "EDM my Bach", | |
| 500, | |
| 0.7, | |
| 3.75 | |
| ], | |
| [ | |
| "4/4 320kbps 32khz, lofi slow bpm electro chill with organic samples", | |
| None, | |
| "medium", | |
| "LoFi Chill", | |
| 0, | |
| 0.7, | |
| 4.0 | |
| ], | |
| ], | |
| inputs=[text, melody_filepath, model, title, topp, temperature, cfg_coef], | |
| outputs=[output] | |
| ) | |
| with gr.Tab("User History") as history_tab: | |
| modules.user_history.setup(display_type="video_path") | |
| modules.user_history.render() | |
| user_profile = gr.State(None) | |
| with gr.Row("Versions") as versions_row: | |
| gr.HTML(value=versions_html(), visible=True, elem_id="versions") | |
| submit.click( | |
| modules.user_history.get_profile, | |
| inputs=[], | |
| outputs=[user_profile], | |
| queue=True, | |
| api_name="submit" | |
| ).then( | |
| predict, | |
| inputs=[model, text,melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap, prompt_index, include_title, include_settings, harmony_only, user_profile, segment_length, settings_font_size, settings_animate_waveform, video_orientation], | |
| outputs=[output, wave_file, seed_used], scroll_to_output=True, show_api=False) | |
| # Show the interface | |
| launch_kwargs = {} | |
| share = kwargs.get('share', False) | |
| server_port = kwargs.get('server_port', 0) | |
| server_name = kwargs.get('listen') | |
| launch_kwargs['server_name'] = server_name | |
| if server_port > 0: | |
| launch_kwargs['server_port'] = server_port | |
| if share: | |
| launch_kwargs['share'] = share | |
| launch_kwargs['allowed_paths'] = ["assets", "./assets", "images", "./images", 'e:/TMP'] | |
| launch_kwargs['favicon_path'] = "./assets/favicon.ico" | |
| launch_kwargs['mcp_server'] = True | |
| launch_kwargs['ssr_mode'] = False | |
| gr.api(ping, api_name="ping") | |
| gr.api(predict_simple) | |
| demo.queue(max_size=10, api_open=True).launch(**launch_kwargs) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '--listen', | |
| type=str, | |
| default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', | |
| help='IP to listen on for connections to Gradio', | |
| ) | |
| parser.add_argument( | |
| '--username', type=str, default='', help='Username for authentication' | |
| ) | |
| parser.add_argument( | |
| '--password', type=str, default='', help='Password for authentication' | |
| ) | |
| parser.add_argument( | |
| '--server_port', | |
| type=int, | |
| default=0, | |
| help='Port to run the server listener on', | |
| ) | |
| parser.add_argument( | |
| '--inbrowser', action='store_true', help='Open in browser' | |
| ) | |
| parser.add_argument( | |
| '--share', action='store_true', help='Share the gradio UI' | |
| ) | |
| parser.add_argument( | |
| '--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory' | |
| ) | |
| parser.add_argument( | |
| '--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)' | |
| ) | |
| parser.add_argument( | |
| '--cache', action='store_true', help='Cache models in RAM to quickly switch between them' | |
| ) | |
| args = parser.parse_args() | |
| launch_kwargs = {} | |
| launch_kwargs['listen'] = args.listen | |
| if args.username and args.password: | |
| launch_kwargs['auth'] = (args.username, args.password) | |
| if args.server_port: | |
| launch_kwargs['server_port'] = args.server_port | |
| if args.inbrowser: | |
| launch_kwargs['inbrowser'] = args.inbrowser | |
| if args.share: | |
| launch_kwargs['share'] = args.share | |
| launch_kwargs['favicon_path']= "./assets/favicon.ico" | |
| UNLOAD_MODEL = args.unload_model | |
| MOVE_TO_CPU = args.unload_to_cpu | |
| if args.cache: | |
| MODELS = {} | |
| ui( | |
| unload_to_cpu = MOVE_TO_CPU, | |
| share=args.share, | |
| **launch_kwargs, | |
| ) | |