from transformers import pipeline import gradio as gr # Load translation pipelines once de_translator = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de") hi_translator = pipeline("translation_en_to_hi", model="Helsinki-NLP/opus-mt-en-hi") def translate_text(text): # Translate English → German result_de = de_translator(text, max_length=40)[0]['translation_text'] # Translate English → Hindi result_hi = hi_translator(text, max_length=40)[0]['translation_text'] return result_de, result_hi # Gradio interface demo = gr.Interface( fn=translate_text, inputs=gr.Textbox(lines=2, placeholder="Enter English text here..."), outputs=[ gr.Textbox(label="Helsinki-NLP Translation (English → German)"), gr.Textbox(label="Helsinki-NLP Translation (English → Hindi)") ], title="📝 Text Translator", description="Enter English text and get translations into German and Hindi using public Helsinki-NLP models" ) if __name__ == "__main__": demo.launch()