Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,26 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
from sklearn.linear_model import LinearRegression
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
# -------------------------------------------
|
| 9 |
# 1️⃣ Create sample dataset
|
| 10 |
# -------------------------------------------
|
| 11 |
|
| 12 |
-
# Let's say delivery time depends on distance (km), order size (items), and hour of day
|
| 13 |
np.random.seed(42)
|
| 14 |
num_samples = 200
|
| 15 |
|
| 16 |
-
distance = np.random.uniform(1, 30, num_samples)
|
| 17 |
-
order_size = np.random.randint(1, 10, num_samples)
|
| 18 |
-
hour_of_day = np.random.randint(8, 23, num_samples)
|
| 19 |
|
| 20 |
-
#
|
| 21 |
noise = np.random.normal(0, 5, num_samples)
|
| 22 |
delivery_time = 5 + 1.2*distance + 2*order_size + 0.5*hour_of_day + noise
|
| 23 |
|
| 24 |
-
# Build DataFrame
|
| 25 |
df = pd.DataFrame({
|
| 26 |
"distance": distance,
|
| 27 |
"order_size": order_size,
|
|
@@ -40,29 +39,57 @@ model = LinearRegression()
|
|
| 40 |
model.fit(X, y)
|
| 41 |
|
| 42 |
# -------------------------------------------
|
| 43 |
-
# 3️⃣ Define
|
| 44 |
# -------------------------------------------
|
| 45 |
|
| 46 |
-
def
|
|
|
|
| 47 |
features = np.array([[distance, order_size, hour_of_day]])
|
| 48 |
prediction = model.predict(features)[0]
|
| 49 |
-
return f"⏱️ Estimated delivery time: {prediction:.2f} minutes"
|
| 50 |
|
| 51 |
-
# Create
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
iface = gr.Interface(
|
| 53 |
-
fn=
|
| 54 |
inputs=[
|
| 55 |
gr.Number(label="Distance (km)", value=5),
|
| 56 |
gr.Number(label="Order Size (number of items)", value=3),
|
| 57 |
-
gr.Number(label="Hour of Day (24h
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
],
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
description="Enter distance, order size, and hour to predict estimated delivery time using linear regression."
|
| 62 |
)
|
| 63 |
|
| 64 |
# -------------------------------------------
|
| 65 |
-
#
|
| 66 |
# -------------------------------------------
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
from sklearn.linear_model import LinearRegression
|
| 6 |
import gradio as gr
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
# -------------------------------------------
|
| 10 |
# 1️⃣ Create sample dataset
|
| 11 |
# -------------------------------------------
|
| 12 |
|
|
|
|
| 13 |
np.random.seed(42)
|
| 14 |
num_samples = 200
|
| 15 |
|
| 16 |
+
distance = np.random.uniform(1, 30, num_samples)
|
| 17 |
+
order_size = np.random.randint(1, 10, num_samples)
|
| 18 |
+
hour_of_day = np.random.randint(8, 23, num_samples)
|
| 19 |
|
| 20 |
+
# delivery_time = base + 1.2*distance + 2*order_size + 0.5*hour + noise
|
| 21 |
noise = np.random.normal(0, 5, num_samples)
|
| 22 |
delivery_time = 5 + 1.2*distance + 2*order_size + 0.5*hour_of_day + noise
|
| 23 |
|
|
|
|
| 24 |
df = pd.DataFrame({
|
| 25 |
"distance": distance,
|
| 26 |
"order_size": order_size,
|
|
|
|
| 39 |
model.fit(X, y)
|
| 40 |
|
| 41 |
# -------------------------------------------
|
| 42 |
+
# 3️⃣ Define prediction + graph function
|
| 43 |
# -------------------------------------------
|
| 44 |
|
| 45 |
+
def predict_and_plot(distance, order_size, hour_of_day):
|
| 46 |
+
# Predict delivery time
|
| 47 |
features = np.array([[distance, order_size, hour_of_day]])
|
| 48 |
prediction = model.predict(features)[0]
|
|
|
|
| 49 |
|
| 50 |
+
# Create graph: vary distance from 1 to 30, keep other inputs fixed
|
| 51 |
+
distances = np.linspace(1, 30, 100)
|
| 52 |
+
inputs = np.column_stack((distances, np.full(100, order_size), np.full(100, hour_of_day)))
|
| 53 |
+
predicted_times = model.predict(inputs)
|
| 54 |
+
|
| 55 |
+
# Plot
|
| 56 |
+
plt.figure(figsize=(6, 4))
|
| 57 |
+
plt.plot(distances, predicted_times, label='Predicted delivery time', color='blue')
|
| 58 |
+
plt.scatter([distance], [prediction], color='red', label='Your input', zorder=5)
|
| 59 |
+
plt.xlabel('Distance (km)')
|
| 60 |
+
plt.ylabel('Estimated delivery time (minutes)')
|
| 61 |
+
plt.title('Delivery Time vs Distance')
|
| 62 |
+
plt.legend()
|
| 63 |
+
plt.tight_layout()
|
| 64 |
+
|
| 65 |
+
# Save plot to file
|
| 66 |
+
plot_path = "delivery_plot.png"
|
| 67 |
+
plt.savefig(plot_path)
|
| 68 |
+
plt.close()
|
| 69 |
+
|
| 70 |
+
return f"⏱️ Estimated delivery time: {prediction:.2f} minutes", plot_path
|
| 71 |
+
|
| 72 |
+
# -------------------------------------------
|
| 73 |
+
# 4️⃣ Gradio interface
|
| 74 |
+
# -------------------------------------------
|
| 75 |
+
|
| 76 |
iface = gr.Interface(
|
| 77 |
+
fn=predict_and_plot,
|
| 78 |
inputs=[
|
| 79 |
gr.Number(label="Distance (km)", value=5),
|
| 80 |
gr.Number(label="Order Size (number of items)", value=3),
|
| 81 |
+
gr.Number(label="Hour of Day (24h, e.g., 14 for 2 PM)", value=12)
|
| 82 |
+
],
|
| 83 |
+
outputs=[
|
| 84 |
+
gr.Text(label="Prediction"),
|
| 85 |
+
gr.Image(label="Delivery Time vs Distance Graph")
|
| 86 |
],
|
| 87 |
+
title="🚚 Delivery Time Estimator with Graph",
|
| 88 |
+
description="Predicts delivery time and shows how it changes with distance (using linear regression)."
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
# -------------------------------------------
|
| 92 |
+
# 5️⃣ Launch app
|
| 93 |
# -------------------------------------------
|
| 94 |
|
| 95 |
if __name__ == "__main__":
|