Spaces:
Sleeping
Sleeping
| # app.py | |
| import numpy as np | |
| import pandas as pd | |
| from sklearn.linear_model import LinearRegression | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| # ------------------------------------------- | |
| # 1️⃣ Create sample dataset | |
| # ------------------------------------------- | |
| np.random.seed(42) | |
| num_samples = 200 | |
| distance = np.random.uniform(1, 30, num_samples) | |
| order_size = np.random.randint(1, 10, num_samples) | |
| hour_of_day = np.random.randint(8, 23, num_samples) | |
| # delivery_time = base + 1.2*distance + 2*order_size + 0.5*hour + noise | |
| noise = np.random.normal(0, 5, num_samples) | |
| delivery_time = 5 + 1.2*distance + 2*order_size + 0.5*hour_of_day + noise | |
| df = pd.DataFrame({ | |
| "distance": distance, | |
| "order_size": order_size, | |
| "hour_of_day": hour_of_day, | |
| "delivery_time": delivery_time | |
| }) | |
| # ------------------------------------------- | |
| # 2️⃣ Train linear regression model | |
| # ------------------------------------------- | |
| X = df[["distance", "order_size", "hour_of_day"]] | |
| y = df["delivery_time"] | |
| model = LinearRegression() | |
| model.fit(X, y) | |
| # ------------------------------------------- | |
| # 3️⃣ Define prediction + graph function | |
| # ------------------------------------------- | |
| def predict_and_plot(distance, order_size, hour_of_day): | |
| # Predict delivery time | |
| features = np.array([[distance, order_size, hour_of_day]]) | |
| prediction = model.predict(features)[0] | |
| # Create graph: vary distance from 1 to 30, keep other inputs fixed | |
| distances = np.linspace(1, 30, 100) | |
| inputs = np.column_stack((distances, np.full(100, order_size), np.full(100, hour_of_day))) | |
| predicted_times = model.predict(inputs) | |
| # Plot | |
| plt.figure(figsize=(6, 4)) | |
| plt.plot(distances, predicted_times, label='Predicted delivery time', color='blue') | |
| plt.scatter([distance], [prediction], color='red', label='Your input', zorder=5) | |
| plt.xlabel('Distance (km)') | |
| plt.ylabel('Estimated delivery time (minutes)') | |
| plt.title('Delivery Time vs Distance') | |
| plt.legend() | |
| plt.tight_layout() | |
| # Save plot to file | |
| plot_path = "delivery_plot.png" | |
| plt.savefig(plot_path) | |
| plt.close() | |
| return f"⏱️ Estimated delivery time: {prediction:.2f} minutes", plot_path | |
| # ------------------------------------------- | |
| # 4️⃣ Gradio interface | |
| # ------------------------------------------- | |
| iface = gr.Interface( | |
| fn=predict_and_plot, | |
| inputs=[ | |
| gr.Number(label="Distance (km)", value=5), | |
| gr.Number(label="Order Size (number of items)", value=3), | |
| gr.Number(label="Hour of Day (24h, e.g., 14 for 2 PM)", value=12) | |
| ], | |
| outputs=[ | |
| gr.Text(label="Prediction"), | |
| gr.Image(label="Delivery Time vs Distance Graph") | |
| ], | |
| title="🚚 Delivery Time Estimator with Graph", | |
| description="Predicts delivery time and shows how it changes with distance (using linear regression)." | |
| ) | |
| # ------------------------------------------- | |
| # 5️⃣ Launch app | |
| # ------------------------------------------- | |
| if __name__ == "__main__": | |
| iface.launch() | |