Spaces:
Runtime error
Runtime error
| from matplotlib.pyplot import text | |
| import numpy as np | |
| import soundfile as sf | |
| import yaml | |
| import tensorflow as tf | |
| from tensorflow_tts.inference import TFAutoModel | |
| from tensorflow_tts.inference import AutoProcessor | |
| from tensorflow_tts.inference import AutoConfig | |
| import gradio as gr | |
| MODEL_NAMES = [ | |
| "Fastspeech2 + Melgan", | |
| "Tacotron2 + Melgan", | |
| ] | |
| fastspeech = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech-ljspeech-en", name="fastspeech") | |
| fastspeech2 = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech2-ljspeech-en", name="fastspeech2") | |
| tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en", name="tacotron2") | |
| melgan = TFAutoModel.from_pretrained("tensorspeech/tts-melgan-ljspeech-en", name="melgan") | |
| mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en", name="mb_melgan") | |
| MODEL_DICT = { | |
| "Fastspeech2" : fastspeech2, | |
| "Tacotron2" : tacotron2, | |
| "Melgan": melgan, | |
| "MB-Melgan": mb_melgan, | |
| } | |
| def inference(input): | |
| input_text, model_type = input[0], input[1] | |
| text2mel_name, vocoder_name = model_type.split(" + ") | |
| text2mel_model, vocoder_model = MODEL_DICT[text2mel_name], MODEL_DICT[vocoder_name] | |
| processor = AutoProcessor.from_pretrained(text2mel_name) | |
| input_ids = processor.text_to_sequence(input_text) | |
| if text2mel_name == "Tacotron": | |
| _, mel_outputs, stop_token_prediction, alignment_history = text2mel_model.inference( | |
| tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
| tf.convert_to_tensor([len(input_ids)], tf.int32), | |
| tf.convert_to_tensor([0], dtype=tf.int32) | |
| ) | |
| elif text2mel_name == "Fastspeech": | |
| mel_before, mel_outputs, duration_outputs = text2mel_model.inference( | |
| input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
| speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), | |
| speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| ) | |
| elif text2mel_name == "Fastspeech2": | |
| mel_before, mel_outputs, duration_outputs, _, _ = text2mel_model.inference( | |
| tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
| speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), | |
| speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
| ) | |
| else: | |
| raise ValueError("Only TACOTRON, FASTSPEECH, FASTSPEECH2 are supported on text2mel_name") | |
| # vocoder part | |
| if vocoder_name == "Melgan": | |
| audio = vocoder_model(mel_outputs)[0, :, 0] | |
| elif vocoder_name == "MB-Melgan": | |
| audio = vocoder_model(mel_outputs)[0, :, 0] | |
| else: | |
| raise ValueError("Only MELGAN, MELGAN-STFT and MB_MELGAN are supported on vocoder_name") | |
| # if text2mel_name == "TACOTRON": | |
| # return mel_outputs.numpy(), alignment_history.numpy(), audio.numpy() | |
| # else: | |
| # return mel_outputs.numpy(), audio.numpy() | |
| sf.write('./audio_after.wav', audio, 22050, "PCM_16") | |
| return './audio_after.wav' | |
| inputs = [ | |
| gr.inputs.Textbox(lines=5, label="Input Text"), | |
| gr.inputs.Radio(label="Pick a TTS Model",choices=MODEL_NAMES,) | |
| ] | |
| outputs = gr.outputs.Audio(type="file", label="Output Audio") | |
| title = "Tensorflow TTS" | |
| description = "Gradio demo for TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." | |
| article = "<p style='text-align: center'><a href='https://tensorspeech.github.io/TensorFlowTTS/'>TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2</a> | <a href='https://github.com/TensorSpeech/TensorFlowTTS'>Github Repo</a></p>" | |
| examples = [ | |
| ["TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2."], | |
| ["With Tensorflow 2, we can speed-up training/inference progress, optimizer further by using fake-quantize aware and pruning, make TTS models can be run faster than real-time and be able to deploy on mobile devices or embedded systems."] | |
| ] | |
| gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |