Commit
·
6b0e51f
1
Parent(s):
ee65134
merge
Browse files
app.py
CHANGED
|
@@ -1,18 +1,22 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
-
import psutil
|
| 4 |
-
from pathlib import Path
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
from peft import PeftModel, PeftConfig
|
| 7 |
from huggingface_hub import login, create_repo, HfApi
|
| 8 |
import gradio as gr
|
| 9 |
-
import queue
|
| 10 |
import time
|
| 11 |
import shutil
|
| 12 |
from gradio_log import Log
|
| 13 |
import logging
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# 全局日志
|
| 17 |
log = logging.getLogger("space_convert")
|
| 18 |
log.setLevel(logging.INFO)
|
|
@@ -45,31 +49,37 @@ def get_model_size_in_gb(model_name):
|
|
| 45 |
def check_system_resources(model_name):
|
| 46 |
"""检查系统资源,决定使用 CPU 或 GPU"""
|
| 47 |
log.info("Checking system resources...")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
log.info(f"Total system memory: {total_memory_gb:.1f}GB")
|
| 51 |
|
| 52 |
model_size_gb = get_model_size_in_gb(model_name)
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
| 54 |
log.info(f"Estimated required memory for model: {required_memory_gb:.1f}GB")
|
| 55 |
|
| 56 |
-
if torch.cuda.is_available():
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
else:
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
if
|
| 69 |
log.info("✅ Sufficient CPU memory available; using CPU.")
|
| 70 |
-
return "cpu",
|
| 71 |
else:
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
@timeit
|
| 75 |
def setup_environment(model_name):
|
|
@@ -114,19 +124,20 @@ def download_and_merge_model(base_model_name, lora_model_name, output_dir, devic
|
|
| 114 |
"""
|
| 115 |
os.makedirs("temp", exist_ok=True)
|
| 116 |
log.info("Loading base model...")
|
| 117 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True,
|
| 118 |
log.info("Loading adapter tokenizer...")
|
| 119 |
-
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto",
|
| 120 |
log.info("Resizing token embeddings...")
|
| 121 |
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
| 122 |
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
| 123 |
log.info("Loading LoRA adapter...")
|
| 124 |
-
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True,
|
| 125 |
log.info("Merging and unloading model...")
|
| 126 |
model = peft_model.merge_and_unload()
|
| 127 |
log.info("Saving model...")
|
| 128 |
model.save_pretrained(output_dir)
|
| 129 |
adapter_tokenizer.save_pretrained(output_dir)
|
|
|
|
| 130 |
return output_dir
|
| 131 |
|
| 132 |
@timeit
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from huggingface_hub import login, create_repo, HfApi
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
import time
|
| 8 |
import shutil
|
| 9 |
from gradio_log import Log
|
| 10 |
import logging
|
| 11 |
|
| 12 |
|
| 13 |
+
MEMORY = int(os.getenv("MEMORY", 16)[:-2]) # 64Gi
|
| 14 |
+
CPU_CORES = int(os.getenv("CPU_CORES", 4)) # 4
|
| 15 |
+
SPACE_AUTHOR_NAME = os.getenv("SPACE_AUTHOR_NAME", "Steven10429") # str
|
| 16 |
+
SPACE_REPO_NAME = os.getenv("SPACE_REPO_NAME", "apply_lora_and_quantize") # str
|
| 17 |
+
SPACE_ID = os.getenv("SPACE_ID", "apply_lora_and_quantize") # str
|
| 18 |
+
|
| 19 |
+
|
| 20 |
# 全局日志
|
| 21 |
log = logging.getLogger("space_convert")
|
| 22 |
log.setLevel(logging.INFO)
|
|
|
|
| 49 |
def check_system_resources(model_name):
|
| 50 |
"""检查系统资源,决定使用 CPU 或 GPU"""
|
| 51 |
log.info("Checking system resources...")
|
| 52 |
+
log.info(f"Total CPU cores: {CPU_CORES}")
|
| 53 |
+
log.info(f"Total system memory: {MEMORY}GB")
|
|
|
|
| 54 |
|
| 55 |
model_size_gb = get_model_size_in_gb(model_name)
|
| 56 |
+
required_memory_gb_16bit = model_size_gb * 1.5
|
| 57 |
+
required_memory_gb = required_memory_gb_16bit
|
| 58 |
+
|
| 59 |
+
|
| 60 |
log.info(f"Estimated required memory for model: {required_memory_gb:.1f}GB")
|
| 61 |
|
| 62 |
+
# if torch.cuda.is_available(): # failed with torch complie without GPU FLAG
|
| 63 |
+
# gpu_name = torch.cuda.get_device_name(0)
|
| 64 |
+
# gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3)
|
| 65 |
+
# log.info(f"Detected GPU: {gpu_name} with {gpu_memory_gb:.1f}GB memory")
|
| 66 |
+
# if gpu_memory_gb >= required_memory_gb:
|
| 67 |
+
# log.info("✅ Sufficient GPU memory available; using GPU.")
|
| 68 |
+
# return "cuda", gpu_memory_gb
|
| 69 |
+
# else:
|
| 70 |
+
# log.warning(f"⚠️ Insufficient GPU memory (requires {required_memory_gb:.1f}GB, found {gpu_memory_gb:.1f}GB).")
|
| 71 |
+
# else:
|
| 72 |
+
# log.error("❌ No GPU detected.")
|
| 73 |
+
# just use CPU, it's enough for merge and quantize
|
| 74 |
|
| 75 |
+
if MEMORY >= required_memory_gb:
|
| 76 |
log.info("✅ Sufficient CPU memory available; using CPU.")
|
| 77 |
+
return "cpu", MEMORY
|
| 78 |
else:
|
| 79 |
+
log.warning(f"⚠️ Insufficient CPU memory (requires {required_memory_gb:.1f}GB, found {MEMORY}GB).")
|
| 80 |
+
log.error("❌ No CPU detected.")
|
| 81 |
+
log.error("Will try low memory mode, but it may fail.")
|
| 82 |
+
return "cpu", MEMORY
|
| 83 |
|
| 84 |
@timeit
|
| 85 |
def setup_environment(model_name):
|
|
|
|
| 124 |
"""
|
| 125 |
os.makedirs("temp", exist_ok=True)
|
| 126 |
log.info("Loading base model...")
|
| 127 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
| 128 |
log.info("Loading adapter tokenizer...")
|
| 129 |
+
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
| 130 |
log.info("Resizing token embeddings...")
|
| 131 |
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
| 132 |
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
| 133 |
log.info("Loading LoRA adapter...")
|
| 134 |
+
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
| 135 |
log.info("Merging and unloading model...")
|
| 136 |
model = peft_model.merge_and_unload()
|
| 137 |
log.info("Saving model...")
|
| 138 |
model.save_pretrained(output_dir)
|
| 139 |
adapter_tokenizer.save_pretrained(output_dir)
|
| 140 |
+
del model, peft_model
|
| 141 |
return output_dir
|
| 142 |
|
| 143 |
@timeit
|