Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,270 Bytes
7e6946d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from flashcosyvoice.modules.flow_components.estimator import \
CausalConditionalDecoder
from flashcosyvoice.modules.flow_components.upsample_encoder import (
UpsampleConformerEncoder, make_pad_mask)
# TODO(xcsong): make it configurable
@dataclass
class CfmParams:
sigma_min: float = 1e-6
solver: str = "euler"
t_scheduler: str = "cosine"
training_cfg_rate: float = 0.2
inference_cfg_rate: float = 0.7
class CausalConditionalCFM(torch.nn.Module):
def __init__(self, in_channels=320, cfm_params=CfmParams(), n_spks=1, spk_emb_dim=80, estimator: torch.nn.Module = None):
super().__init__()
self.n_feats = in_channels
self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.solver = cfm_params.solver
if hasattr(cfm_params, "sigma_min"):
self.sigma_min = cfm_params.sigma_min
else:
self.sigma_min = 1e-4
self.t_scheduler = cfm_params.t_scheduler
self.training_cfg_rate = cfm_params.training_cfg_rate
self.inference_cfg_rate = cfm_params.inference_cfg_rate
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
# Just change the architecture of the estimator here
self.estimator = CausalConditionalDecoder() if estimator is None else estimator
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
# fix prompt and overlap part mu and z
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None
def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
"""
batch_size = x.size(0)
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
# Create tensors with double batch size for CFG (conditional + unconditional)
x_in = torch.zeros([batch_size * 2, x.size(1), x.size(2)], device=x.device, dtype=x.dtype)
mask_in = torch.zeros([batch_size * 2, mask.size(1), mask.size(2)], device=x.device, dtype=x.dtype)
mu_in = torch.zeros([batch_size * 2, mu.size(1), mu.size(2)], device=x.device, dtype=x.dtype)
t_in = torch.zeros([batch_size * 2], device=x.device, dtype=x.dtype)
spks_in = torch.zeros([batch_size * 2, spks.size(1)], device=x.device, dtype=x.dtype)
cond_in = torch.zeros([batch_size * 2, cond.size(1), cond.size(2)], device=x.device, dtype=x.dtype)
for step in range(1, len(t_span)):
# Classifier-Free Guidance inference introduced in VoiceBox
# Copy conditional and unconditional input
x_in[:batch_size] = x
x_in[batch_size:] = x
mask_in[:batch_size] = mask
mask_in[batch_size:] = mask
mu_in[:batch_size] = mu
# Unconditional part remains 0
t_in.fill_(t)
spks_in[:batch_size] = spks
cond_in[:batch_size] = cond
dphi_dt = self.estimator(
x_in, mask_in,
mu_in, t_in,
spks_in,
cond_in,
streaming
)
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [batch_size, batch_size], dim=0)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1].float()
class CausalMaskedDiffWithXvec(torch.nn.Module):
def __init__(
self,
input_size: int = 512,
output_size: int = 80,
spk_embed_dim: int = 192,
output_type: str = "mel",
vocab_size: int = 6561,
input_frame_rate: int = 25,
token_mel_ratio: int = 2,
pre_lookahead_len: int = 3,
encoder: torch.nn.Module = None,
decoder: torch.nn.Module = None,
):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
self.input_embedding = nn.Embedding(vocab_size, input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
self.encoder = UpsampleConformerEncoder() if encoder is None else encoder
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
self.decoder = CausalConditionalCFM() if decoder is None else decoder
self.token_mel_ratio = token_mel_ratio
self.pre_lookahead_len = pre_lookahead_len
@torch.inference_mode()
def forward(self,
token,
token_len,
prompt_feat,
prompt_feat_len,
embedding,
streaming,
finalize):
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
mask = (~make_pad_mask(token_len, max_len=token.shape[1])).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
if finalize is True:
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
else:
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming)
h = self.encoder_proj(h)
# get conditions
conds = torch.zeros_like(h, device=token.device)
for i, j in enumerate(prompt_feat_len):
conds[i, :j] = prompt_feat[i, :j]
conds = conds.transpose(1, 2)
h_lengths = h_lengths.sum(dim=-1).squeeze(dim=1)
mask = (~make_pad_mask(h_lengths, max_len=h.shape[1])).to(h)
feat, _ = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
spks=embedding,
cond=conds,
n_timesteps=10,
streaming=streaming
) # [B, num_mels, T]
return feat.float(), h_lengths
|