Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import numpy as np
|
|
| 5 |
import gradio as gr
|
| 6 |
import json
|
| 7 |
from pathlib import Path
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
# Load WER metric
|
|
@@ -19,7 +20,10 @@ model_name = {
|
|
| 19 |
# open ds_data.json
|
| 20 |
with open("ds_data.json", "r") as f:
|
| 21 |
table_data = json.load(f)
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
def compute_wer_table(audio, text):
|
| 24 |
# Convert the wav into an array
|
| 25 |
audio_input = audio[1]
|
|
@@ -34,6 +38,7 @@ def compute_wer_table(audio, text):
|
|
| 34 |
pipe = pipeline("automatic-speech-recognition", model=model_name[model])
|
| 35 |
transcription = pipe(audio_input)['text']
|
| 36 |
# transcription = transcription.translate(remove_chars)
|
|
|
|
| 37 |
trans.append(transcription)
|
| 38 |
wer = wer_metric.compute(predictions=[transcription.upper()], references=[text.upper()])
|
| 39 |
wer_scores.append(wer)
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import json
|
| 7 |
from pathlib import Path
|
| 8 |
+
import re
|
| 9 |
|
| 10 |
|
| 11 |
# Load WER metric
|
|
|
|
| 20 |
# open ds_data.json
|
| 21 |
with open("ds_data.json", "r") as f:
|
| 22 |
table_data = json.load(f)
|
| 23 |
+
|
| 24 |
+
def clean_text(text):
|
| 25 |
+
return re.sub(r'[.,!?]', '', text)
|
| 26 |
+
|
| 27 |
def compute_wer_table(audio, text):
|
| 28 |
# Convert the wav into an array
|
| 29 |
audio_input = audio[1]
|
|
|
|
| 38 |
pipe = pipeline("automatic-speech-recognition", model=model_name[model])
|
| 39 |
transcription = pipe(audio_input)['text']
|
| 40 |
# transcription = transcription.translate(remove_chars)
|
| 41 |
+
transcription = clean_text(transcription)
|
| 42 |
trans.append(transcription)
|
| 43 |
wer = wer_metric.compute(predictions=[transcription.upper()], references=[text.upper()])
|
| 44 |
wer_scores.append(wer)
|