Commit
·
8ed5ec4
1
Parent(s):
4849a2b
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from peft import PeftModel
|
| 3 |
+
import transformers
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
assert (
|
| 7 |
+
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
| 8 |
+
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
| 9 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
| 10 |
+
|
| 11 |
+
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
| 12 |
+
|
| 13 |
+
BASE_MODEL = "decapoda-research/llama-7b-hf"
|
| 14 |
+
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
|
| 15 |
+
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
device = "cuda"
|
| 18 |
+
else:
|
| 19 |
+
device = "cpu"
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
if torch.backends.mps.is_available():
|
| 23 |
+
device = "mps"
|
| 24 |
+
except:
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
if device == "cuda":
|
| 28 |
+
model = LlamaForCausalLM.from_pretrained(
|
| 29 |
+
BASE_MODEL,
|
| 30 |
+
load_in_8bit=False,
|
| 31 |
+
torch_dtype=torch.float16,
|
| 32 |
+
device_map="auto",
|
| 33 |
+
)
|
| 34 |
+
model = PeftModel.from_pretrained(
|
| 35 |
+
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
|
| 36 |
+
)
|
| 37 |
+
elif device == "mps":
|
| 38 |
+
model = LlamaForCausalLM.from_pretrained(
|
| 39 |
+
BASE_MODEL,
|
| 40 |
+
device_map={"": device},
|
| 41 |
+
torch_dtype=torch.float16,
|
| 42 |
+
)
|
| 43 |
+
model = PeftModel.from_pretrained(
|
| 44 |
+
model,
|
| 45 |
+
LORA_WEIGHTS,
|
| 46 |
+
device_map={"": device},
|
| 47 |
+
torch_dtype=torch.float16,
|
| 48 |
+
)
|
| 49 |
+
else:
|
| 50 |
+
model = LlamaForCausalLM.from_pretrained(
|
| 51 |
+
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
|
| 52 |
+
)
|
| 53 |
+
model = PeftModel.from_pretrained(
|
| 54 |
+
model,
|
| 55 |
+
LORA_WEIGHTS,
|
| 56 |
+
device_map={"": device},
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def generate_prompt(instruction, input=None):
|
| 61 |
+
if input:
|
| 62 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 63 |
+
### Instruction:
|
| 64 |
+
{instruction}
|
| 65 |
+
### Input:
|
| 66 |
+
{input}
|
| 67 |
+
### Response:"""
|
| 68 |
+
else:
|
| 69 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
| 70 |
+
### Instruction:
|
| 71 |
+
{instruction}
|
| 72 |
+
### Response:"""
|
| 73 |
+
|
| 74 |
+
if device != "cpu":
|
| 75 |
+
model.half()
|
| 76 |
+
model.eval()
|
| 77 |
+
if torch.__version__ >= "2":
|
| 78 |
+
model = torch.compile(model)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def evaluate(
|
| 82 |
+
instruction,
|
| 83 |
+
input=None,
|
| 84 |
+
temperature=0.1,
|
| 85 |
+
top_p=0.75,
|
| 86 |
+
top_k=40,
|
| 87 |
+
num_beams=4,
|
| 88 |
+
max_new_tokens=128,
|
| 89 |
+
**kwargs,
|
| 90 |
+
):
|
| 91 |
+
prompt = generate_prompt(instruction, input)
|
| 92 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 93 |
+
input_ids = inputs["input_ids"].to(device)
|
| 94 |
+
generation_config = GenerationConfig(
|
| 95 |
+
temperature=temperature,
|
| 96 |
+
top_p=top_p,
|
| 97 |
+
top_k=top_k,
|
| 98 |
+
num_beams=num_beams,
|
| 99 |
+
**kwargs,
|
| 100 |
+
)
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
generation_output = model.generate(
|
| 103 |
+
input_ids=input_ids,
|
| 104 |
+
generation_config=generation_config,
|
| 105 |
+
return_dict_in_generate=True,
|
| 106 |
+
output_scores=True,
|
| 107 |
+
max_new_tokens=max_new_tokens,
|
| 108 |
+
)
|
| 109 |
+
s = generation_output.sequences[0]
|
| 110 |
+
output = tokenizer.decode(s)
|
| 111 |
+
return output.split("### Response:")[1].strip()
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
g = gr.Interface(
|
| 115 |
+
fn=evaluate,
|
| 116 |
+
inputs=[
|
| 117 |
+
gr.components.Textbox(
|
| 118 |
+
lines=2, label="Instruction", placeholder="Tell me about alpacas."
|
| 119 |
+
),
|
| 120 |
+
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
| 121 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
| 122 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
| 123 |
+
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
| 124 |
+
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
|
| 125 |
+
gr.components.Slider(
|
| 126 |
+
minimum=1, maximum=512, step=1, value=128, label="Max tokens"
|
| 127 |
+
),
|
| 128 |
+
],
|
| 129 |
+
outputs=[
|
| 130 |
+
gr.inputs.Textbox(
|
| 131 |
+
lines=5,
|
| 132 |
+
label="Output",
|
| 133 |
+
)
|
| 134 |
+
],
|
| 135 |
+
title="🦙🌲 Alpaca-LoRA",
|
| 136 |
+
description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).",
|
| 137 |
+
)
|
| 138 |
+
g.queue(concurrency_count=1)
|
| 139 |
+
g.launch()
|