initial commit
Browse files- app.py +145 -0
- images.png +0 -0
- packages.txt +1 -0
- requirements.txt +16 -0
- scholarly_text.jpg +0 -0
app.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
## App: NLP App with Streamlit
|
| 3 |
+
Credits: Streamlit Team,Marc Skov Madsen(For Awesome-streamlit gallery)
|
| 4 |
+
Description
|
| 5 |
+
This is a Natural Language Processing(NLP) Based App useful for basic NLP concepts such as follows;
|
| 6 |
+
|
| 7 |
+
+ Tokenization & Lemmatization using Spacy
|
| 8 |
+
|
| 9 |
+
+ Named Entity Recognition(NER) using SpaCy
|
| 10 |
+
|
| 11 |
+
+ Sentiment Analysis using TextBlob
|
| 12 |
+
|
| 13 |
+
+ Document/Text Summarization using Gensim/T5
|
| 14 |
+
|
| 15 |
+
This is built with Streamlit Framework, an awesome framework for building ML and NLP tools.
|
| 16 |
+
Purpose
|
| 17 |
+
To perform basic and useful NLP task with Streamlit, Spacy, Textblob and Gensim
|
| 18 |
+
"""
|
| 19 |
+
# Core Pkgs
|
| 20 |
+
import streamlit as st
|
| 21 |
+
import os
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 24 |
+
|
| 25 |
+
# NLP Pkgs
|
| 26 |
+
from textblob import TextBlob
|
| 27 |
+
import spacy
|
| 28 |
+
from gensim.summarization import summarize
|
| 29 |
+
import requests
|
| 30 |
+
import cv2
|
| 31 |
+
import numpy as np
|
| 32 |
+
import pytesseract
|
| 33 |
+
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 34 |
+
from PIL import Image
|
| 35 |
+
# Function to Analyse Tokens and Lemma
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
| 37 |
+
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
| 38 |
+
@st.cache
|
| 39 |
+
def text_analyzer(my_text):
|
| 40 |
+
nlp = spacy.load('en_core_web_sm')
|
| 41 |
+
docx = nlp(my_text)
|
| 42 |
+
# tokens = [ token.text for token in docx]
|
| 43 |
+
allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
|
| 44 |
+
return allData
|
| 45 |
+
|
| 46 |
+
# Function For Extracting Entities
|
| 47 |
+
@st.cache
|
| 48 |
+
def entity_analyzer(my_text):
|
| 49 |
+
nlp = spacy.load('en_core_web_sm')
|
| 50 |
+
docx = nlp(my_text)
|
| 51 |
+
tokens = [ token.text for token in docx]
|
| 52 |
+
entities = [(entity.text,entity.label_)for entity in docx.ents]
|
| 53 |
+
allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
|
| 54 |
+
return allData
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def main():
|
| 58 |
+
""" NLP Based App with Streamlit """
|
| 59 |
+
|
| 60 |
+
# Title
|
| 61 |
+
st.title("Streamlit NLP APP")
|
| 62 |
+
st.markdown("""
|
| 63 |
+
#### Description
|
| 64 |
+
+ This is a Natural Language Processing(NLP) Based App useful for basic NLP task
|
| 65 |
+
NER,Sentiment, Spell Corrections and Summarization
|
| 66 |
+
""")
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Entity Extraction
|
| 70 |
+
if st.checkbox("Show Named Entities"):
|
| 71 |
+
st.subheader("Analyze Your Text")
|
| 72 |
+
|
| 73 |
+
message = st.text_area("Enter your Text","Typing Here ..")
|
| 74 |
+
if st.button("Extract"):
|
| 75 |
+
entity_result = entity_analyzer(message)
|
| 76 |
+
st.json(entity_result)
|
| 77 |
+
|
| 78 |
+
# Sentiment Analysis
|
| 79 |
+
elif st.checkbox("Show Sentiment Analysis"):
|
| 80 |
+
st.subheader("Analyse Your Text")
|
| 81 |
+
message = st.text_area("Enter Text plz","Type Here .")
|
| 82 |
+
if st.button("Analyze"):
|
| 83 |
+
blob = TextBlob(message)
|
| 84 |
+
result_sentiment = blob.sentiment
|
| 85 |
+
st.success(result_sentiment)
|
| 86 |
+
#Text Corrections
|
| 87 |
+
elif st.checkbox("Spell Corrections"):
|
| 88 |
+
st.subheader("Correct Your Text")
|
| 89 |
+
message = st.text_area("Enter the Text","Type please ..")
|
| 90 |
+
if st.button("Spell Corrections"):
|
| 91 |
+
st.text("Using TextBlob ..")
|
| 92 |
+
st.success(TextBlob(message).correct())
|
| 93 |
+
def change_photo_state():
|
| 94 |
+
st.session_state["photo"]="done"
|
| 95 |
+
st.subheader("Summary section, feed your image!")
|
| 96 |
+
camera_photo = st.camera_input("Take a photo", on_change=change_photo_state)
|
| 97 |
+
uploaded_photo = st.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
|
| 98 |
+
message = st.text_input("Or, drop your text here!")
|
| 99 |
+
if "photo" not in st.session_state:
|
| 100 |
+
st.session_state["photo"]="not done"
|
| 101 |
+
|
| 102 |
+
if st.session_state["photo"]=="done" or message:
|
| 103 |
+
if uploaded_photo:
|
| 104 |
+
img = Image.open(uploaded_photo)
|
| 105 |
+
img = img.save("img.png")
|
| 106 |
+
img = cv2.imread("img.png")
|
| 107 |
+
text = pytesseract.image_to_string(img)
|
| 108 |
+
st.success(text)
|
| 109 |
+
if camera_photo:
|
| 110 |
+
img = Image.open(camera_photo)
|
| 111 |
+
img = img.save("img.png")
|
| 112 |
+
img = cv2.imread("img.png")
|
| 113 |
+
text = pytesseract.image_to_string(img)
|
| 114 |
+
st.success(text)
|
| 115 |
+
if uploaded_photo==None and camera_photo==None:
|
| 116 |
+
#our_image=load_image("image.jpg")
|
| 117 |
+
#img = cv2.imread("scholarly_text.jpg")
|
| 118 |
+
text = message
|
| 119 |
+
# Summarization
|
| 120 |
+
if st.checkbox("Show Text Summarization Genism"):
|
| 121 |
+
st.subheader("Summarize Your Text")
|
| 122 |
+
#message = st.text_area("Enter the Text","Type please ..")
|
| 123 |
+
st.text("Using Gensim Summarizer ..")
|
| 124 |
+
#st.success(mess)
|
| 125 |
+
summary_result = summarize(text)
|
| 126 |
+
st.success(summary_result)
|
| 127 |
+
|
| 128 |
+
elif st.checkbox("Show Text Summarization T5"):
|
| 129 |
+
st.subheader("Summarize Your Text")
|
| 130 |
+
#message = st.text_area("Enter the Text","Type please ..")
|
| 131 |
+
st.text("Using Google T5 Transformer ..")
|
| 132 |
+
inputs = tokenizer.encode("summarize: " + text,
|
| 133 |
+
return_tensors='pt',
|
| 134 |
+
max_length=512,
|
| 135 |
+
truncation=True)
|
| 136 |
+
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
|
| 137 |
+
summary = tokenizer.decode(summary_ids[0])
|
| 138 |
+
st.success(summary)
|
| 139 |
+
|
| 140 |
+
st.sidebar.subheader("About App")
|
| 141 |
+
st.sidebar.subheader("By")
|
| 142 |
+
st.sidebar.text("Soumen Sarker")
|
| 143 |
+
|
| 144 |
+
if __name__ == '__main__':
|
| 145 |
+
main()
|
images.png
ADDED
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
tesseract-ocr-all
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
nltk==3.6.5
|
| 4 |
+
wordnet
|
| 5 |
+
gensim==3.8.3
|
| 6 |
+
joblib==1.1.0
|
| 7 |
+
numpy==1.21.4
|
| 8 |
+
pandas==1.3.4
|
| 9 |
+
scikit-learn==1.0.1
|
| 10 |
+
spacy==3.2.0
|
| 11 |
+
streamlit==1.2.0
|
| 12 |
+
textblob==0.17.1
|
| 13 |
+
request
|
| 14 |
+
pytesseract
|
| 15 |
+
opencv-python
|
| 16 |
+
Pillow
|
scholarly_text.jpg
ADDED
|