Spaces:
Sleeping
Sleeping
Commit
·
4bcb630
1
Parent(s):
503aad2
feat : use custom pg vector and gpt4all embeddings
Browse files
app.py
CHANGED
|
@@ -1,18 +1,15 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
import streamlit.components.v1 as components
|
| 5 |
from css import load_css
|
|
|
|
| 6 |
from langchain import OpenAI
|
| 7 |
from langchain.callbacks import get_openai_callback
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
| 10 |
-
from langchain.embeddings
|
| 11 |
-
from langchain.vectorstores.pgvector import PGVector
|
| 12 |
from message import Message
|
| 13 |
|
| 14 |
CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"
|
| 15 |
-
COLLECTION_NAME = ""
|
| 16 |
|
| 17 |
|
| 18 |
def initialize_session_state():
|
|
@@ -21,15 +18,16 @@ def initialize_session_state():
|
|
| 21 |
if "token_count" not in st.session_state:
|
| 22 |
st.session_state.token_count = 0
|
| 23 |
if "conversation" not in st.session_state:
|
| 24 |
-
embeddings =
|
| 25 |
|
| 26 |
-
|
| 27 |
-
collection_name=COLLECTION_NAME,
|
| 28 |
-
connection_string=CONNECTION_STRING,
|
| 29 |
embedding_function=embeddings,
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
-
retriever =
|
| 33 |
|
| 34 |
llm = OpenAI(
|
| 35 |
temperature=0,
|
|
@@ -39,7 +37,7 @@ def initialize_session_state():
|
|
| 39 |
|
| 40 |
st.session_state.memory = ConversationBufferMemory()
|
| 41 |
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
|
| 42 |
-
llm=llm, retriever=retriever
|
| 43 |
)
|
| 44 |
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import streamlit.components.v1 as components
|
| 3 |
from css import load_css
|
| 4 |
+
from custom_pgvector import CustomPGVector
|
| 5 |
from langchain import OpenAI
|
| 6 |
from langchain.callbacks import get_openai_callback
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
| 9 |
+
from langchain.embeddings import GPT4AllEmbeddings
|
|
|
|
| 10 |
from message import Message
|
| 11 |
|
| 12 |
CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def initialize_session_state():
|
|
|
|
| 18 |
if "token_count" not in st.session_state:
|
| 19 |
st.session_state.token_count = 0
|
| 20 |
if "conversation" not in st.session_state:
|
| 21 |
+
embeddings = GPT4AllEmbeddings()
|
| 22 |
|
| 23 |
+
db = CustomPGVector(
|
|
|
|
|
|
|
| 24 |
embedding_function=embeddings,
|
| 25 |
+
table_name="article",
|
| 26 |
+
column_name="abstract_embedding",
|
| 27 |
+
connection_string=CONNECTION_STRING,
|
| 28 |
)
|
| 29 |
|
| 30 |
+
retriever = db.as_retriever()
|
| 31 |
|
| 32 |
llm = OpenAI(
|
| 33 |
temperature=0,
|
|
|
|
| 37 |
|
| 38 |
st.session_state.memory = ConversationBufferMemory()
|
| 39 |
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
|
| 40 |
+
llm=llm, retriever=retriever, verbose=True
|
| 41 |
)
|
| 42 |
|
| 43 |
|