Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- Dockerfile +32 -5
- README.md +4 -9
- app.py +6 -9
- app.py_09_23_24 +62 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Dockerfile
CHANGED
|
@@ -1,12 +1,39 @@
|
|
| 1 |
-
# Use the
|
| 2 |
-
FROM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# Set the environment variable for the Hugging Face cache directory
|
| 5 |
ENV HF_HOME=/app/.cache
|
| 6 |
|
| 7 |
# Create the cache directory and give the appropriate permissions
|
| 8 |
RUN mkdir -p /app/.cache && chmod 777 /app/.cache
|
| 9 |
-
RUN mkdir -p /app/gradio_flagged && chmod 777 /app/gradio_flagged
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
CMD ["
|
|
|
|
|
|
| 1 |
+
# Use the full Python 3.9 image (if you need specific modules)
|
| 2 |
+
FROM python:3.9.19
|
| 3 |
+
|
| 4 |
+
RUN useradd -m -u 1000 user
|
| 5 |
+
USER user
|
| 6 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 7 |
+
|
| 8 |
+
# Working Directory
|
| 9 |
+
WORKDIR /app
|
| 10 |
+
|
| 11 |
+
COPY --chown=user ./models/ models/
|
| 12 |
+
COPY --chown=user ./app.py app.py
|
| 13 |
+
|
| 14 |
+
RUN pip install --no-cache-dir torch==2.2.2
|
| 15 |
+
RUN pip install --no-cache-dir packaging
|
| 16 |
+
|
| 17 |
+
# Copy Dependencies (if you have any)
|
| 18 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 19 |
+
|
| 20 |
+
# Install Dependencies (if you have any)
|
| 21 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 22 |
+
RUN pip install -U git+https://github.com/sustcsonglin/flash-linear-attention
|
| 23 |
+
|
| 24 |
+
# Copy Custom Modules (Adjust paths if needed)
|
| 25 |
+
COPY --chown=user ./causal-conv1d/ causal-conv1d/
|
| 26 |
+
RUN cd /app/causal-conv1d && python setup.py install --user
|
| 27 |
+
|
| 28 |
+
COPY --chown=user ./mamba/ mamba/
|
| 29 |
+
RUN cd /app/mamba && python setup.py install --user
|
| 30 |
|
| 31 |
# Set the environment variable for the Hugging Face cache directory
|
| 32 |
ENV HF_HOME=/app/.cache
|
| 33 |
|
| 34 |
# Create the cache directory and give the appropriate permissions
|
| 35 |
RUN mkdir -p /app/.cache && chmod 777 /app/.cache
|
|
|
|
| 36 |
|
| 37 |
+
# Print Messages
|
| 38 |
+
# CMD ["bash"]
|
| 39 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
|
@@ -1,11 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
sdk: docker
|
| 7 |
-
pinned: false
|
| 8 |
-
license: apache-2.0
|
| 9 |
---
|
| 10 |
-
|
| 11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: cpu-casuallm
|
| 3 |
+
app_file: app.py
|
| 4 |
+
sdk: gradio
|
| 5 |
+
sdk_version: 4.42.0
|
|
|
|
|
|
|
|
|
|
| 6 |
---
|
|
|
|
|
|
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import time
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
def generate_prompt(instruction, input=""):
|
| 7 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
|
@@ -47,7 +48,7 @@ def generate_text(input_text):
|
|
| 47 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 48 |
|
| 49 |
generated_text = ""
|
| 50 |
-
|
| 51 |
for i in range(333):
|
| 52 |
output = model.generate(input_ids, max_new_tokens=1, do_sample=True, temperature=1.0, top_p=0.3, top_k=0)
|
| 53 |
new_word = tokenizer.decode(output[0][-1:], skip_special_tokens=True)
|
|
@@ -55,15 +56,9 @@ def generate_text(input_text):
|
|
| 55 |
print(new_word, end="", flush=True)
|
| 56 |
generated_text += new_word
|
| 57 |
|
| 58 |
-
if new_word == '\n' or new_word == '.':
|
| 59 |
-
stop_sequence_found = True
|
| 60 |
-
break
|
| 61 |
|
| 62 |
input_ids = output
|
| 63 |
|
| 64 |
-
if stop_sequence_found:
|
| 65 |
-
print("\n(Stop sequence found)")
|
| 66 |
-
print()
|
| 67 |
return generated_text
|
| 68 |
|
| 69 |
# Create the Gradio interface
|
|
@@ -73,11 +68,13 @@ iface = gr.Interface(
|
|
| 73 |
outputs="text",
|
| 74 |
title="RWKV Chatbot",
|
| 75 |
description="Enter your prompt below:",
|
| 76 |
-
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
# For local testing:
|
| 80 |
-
# iface.launch()
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
# Hugging Face Spaces will automatically launch the interface.
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import time
|
| 4 |
import gradio as gr
|
| 5 |
+
from gradio import deploy
|
| 6 |
|
| 7 |
def generate_prompt(instruction, input=""):
|
| 8 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
|
|
|
| 48 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 49 |
|
| 50 |
generated_text = ""
|
| 51 |
+
|
| 52 |
for i in range(333):
|
| 53 |
output = model.generate(input_ids, max_new_tokens=1, do_sample=True, temperature=1.0, top_p=0.3, top_k=0)
|
| 54 |
new_word = tokenizer.decode(output[0][-1:], skip_special_tokens=True)
|
|
|
|
| 56 |
print(new_word, end="", flush=True)
|
| 57 |
generated_text += new_word
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
input_ids = output
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
return generated_text
|
| 63 |
|
| 64 |
# Create the Gradio interface
|
|
|
|
| 68 |
outputs="text",
|
| 69 |
title="RWKV Chatbot",
|
| 70 |
description="Enter your prompt below:",
|
| 71 |
+
# flagging_callback=None
|
| 72 |
+
flagging_dir="gradio_flagged/"
|
| 73 |
)
|
| 74 |
|
| 75 |
# For local testing:
|
| 76 |
+
# iface.launch(share=True)
|
| 77 |
+
deploy()
|
| 78 |
|
| 79 |
|
| 80 |
# Hugging Face Spaces will automatically launch the interface.
|
app.py_09_23_24
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
def generate_prompt(instruction, input=""):
|
| 6 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
| 7 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
| 8 |
+
if input:
|
| 9 |
+
return f"""Instruction: {instruction}
|
| 10 |
+
|
| 11 |
+
Input: {input}
|
| 12 |
+
|
| 13 |
+
Response:"""
|
| 14 |
+
else:
|
| 15 |
+
return f"""User: hi
|
| 16 |
+
|
| 17 |
+
Lover: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
| 18 |
+
|
| 19 |
+
User: {instruction}
|
| 20 |
+
|
| 21 |
+
Lover:"""
|
| 22 |
+
|
| 23 |
+
model_path = "models/rwkv-6-world-1b6/" # Path to your local model directory
|
| 24 |
+
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
model_path,
|
| 27 |
+
trust_remote_code=True,
|
| 28 |
+
use_flash_attention_2=False # Explicitly disable Flash Attention
|
| 29 |
+
).to(torch.float32)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 33 |
+
model_path,
|
| 34 |
+
bos_token="</s>",
|
| 35 |
+
eos_token="</ s>",
|
| 36 |
+
unk_token="<unk>",
|
| 37 |
+
pad_token="<pad>",
|
| 38 |
+
trust_remote_code=True,
|
| 39 |
+
padding_side='left',
|
| 40 |
+
clean_up_tokenization_spaces=False # Or set to True if you prefer
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
print(tokenizer.special_tokens_map)
|
| 44 |
+
|
| 45 |
+
text = "Hi"
|
| 46 |
+
|
| 47 |
+
prompt = generate_prompt(text)
|
| 48 |
+
|
| 49 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 50 |
+
|
| 51 |
+
# Generate text word by word with stop sequence
|
| 52 |
+
generated_text = ""
|
| 53 |
+
for i in range(333): # Generate up to 333 tokens
|
| 54 |
+
output = model.generate(input_ids, max_new_tokens=1, do_sample=True, temperature=1.0, top_p=0.3, top_k=0)
|
| 55 |
+
new_word = tokenizer.decode(output[0][-1:], skip_special_tokens=True)
|
| 56 |
+
|
| 57 |
+
print(new_word, end="", flush=True) # Print word-by-word
|
| 58 |
+
generated_text += new_word
|
| 59 |
+
|
| 60 |
+
input_ids = output # Update input_ids for next iteration
|
| 61 |
+
|
| 62 |
+
print() # Add a newline at the end
|