Update app.py
Browse files
app.py
CHANGED
|
@@ -3,95 +3,190 @@ import torch
|
|
| 3 |
import torchaudio
|
| 4 |
import re
|
| 5 |
import os
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 10 |
|
| 11 |
-
# Load models
|
| 12 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 13 |
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device)
|
| 14 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 15 |
|
|
|
|
|
|
|
| 16 |
speaker_model = EncoderClassifier.from_hparams(
|
| 17 |
source="speechbrain/spkrec-xvect-voxceleb",
|
| 18 |
run_opts={"device": device},
|
| 19 |
-
savedir="
|
| 20 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
#
|
|
|
|
| 23 |
EMB_PATH = "speaker_embedding.pt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
if os.path.exists(EMB_PATH):
|
|
|
|
| 25 |
speaker_embedding = torch.load(EMB_PATH).to(device)
|
| 26 |
else:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
return
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
return (
|
| 56 |
-
|
| 57 |
-
thousands, remainder = divmod(number, 1000)
|
| 58 |
-
return (number_to_words(thousands) + " kun" if thousands > 1 else "KUN") + (" " + number_to_words(remainder) if remainder else "")
|
| 59 |
-
elif number < 1000000000:
|
| 60 |
-
millions, remainder = divmod(number, 1000000)
|
| 61 |
-
return number_to_words(millions) + " malyan" + (" " + number_to_words(remainder) if remainder else "")
|
| 62 |
-
elif number < 1000000000000:
|
| 63 |
-
billions, remainder = divmod(number, 1000000000)
|
| 64 |
-
return number_to_words(billions) + " milyaar" + (" " + number_to_words(remainder) if remainder else "")
|
| 65 |
-
else:
|
| 66 |
-
return str(number)
|
| 67 |
-
|
| 68 |
-
def replace_numbers_with_words(text):
|
| 69 |
-
def replace(match):
|
| 70 |
-
number = int(match.group())
|
| 71 |
-
return number_to_words(number)
|
| 72 |
-
return re.sub(r'\b\d+\b', replace, text)
|
| 73 |
|
| 74 |
def normalize_text(text):
|
|
|
|
| 75 |
text = text.lower()
|
| 76 |
-
|
| 77 |
-
text = re.sub(r
|
|
|
|
|
|
|
|
|
|
| 78 |
return text
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
def text_to_speech(text):
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
with torch.no_grad():
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
# Gradio Interface
|
| 89 |
iface = gr.Interface(
|
| 90 |
fn=text_to_speech,
|
| 91 |
-
inputs=gr.Textbox(
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
| 3 |
import torchaudio
|
| 4 |
import re
|
| 5 |
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
import soundfile as sf
|
| 8 |
+
from pydub import AudioSegment, effects
|
| 9 |
|
| 10 |
+
# --- Model Loading ---
|
| 11 |
+
print("Loading models, this may take a moment...")
|
| 12 |
+
|
| 13 |
+
# Check for CUDA (GPU) availability
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
print(f"Using device: {device}")
|
| 16 |
|
| 17 |
+
# Load the core TTS models from Hugging Face
|
| 18 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 19 |
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device)
|
| 20 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 21 |
|
| 22 |
+
# Load the speaker encoder model from SpeechBrain
|
| 23 |
+
# This model creates the voice profile (embedding) from an audio sample.
|
| 24 |
speaker_model = EncoderClassifier.from_hparams(
|
| 25 |
source="speechbrain/spkrec-xvect-voxceleb",
|
| 26 |
run_opts={"device": device},
|
| 27 |
+
savedir=os.path.join("models", "spk_model") # Organized model saving
|
| 28 |
)
|
| 29 |
+
print("Models loaded successfully.")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# --- Speaker Embedding Generation ---
|
| 33 |
+
# This section creates the unique voice identity for the TTS.
|
| 34 |
+
|
| 35 |
+
def create_speaker_embedding(audio_path):
|
| 36 |
+
"""
|
| 37 |
+
Normalizes the input audio and creates a high-quality speaker embedding.
|
| 38 |
+
"""
|
| 39 |
+
print("Creating speaker embedding...")
|
| 40 |
+
# 1. Pre-process the audio for better quality
|
| 41 |
+
print(f"Normalizing audio file: {audio_path}")
|
| 42 |
+
raw_audio = AudioSegment.from_wav(audio_path)
|
| 43 |
+
normalized_audio = effects.normalize(raw_audio)
|
| 44 |
+
|
| 45 |
+
# pydub works with milliseconds
|
| 46 |
+
normalized_audio_path = "normalized_speaker.wav"
|
| 47 |
+
normalized_audio.export(normalized_audio_path, format="wav")
|
| 48 |
+
|
| 49 |
+
# 2. Generate the embedding
|
| 50 |
+
waveform, sr = torchaudio.load(normalized_audio_path)
|
| 51 |
+
# Resample if necessary and move to the correct device
|
| 52 |
+
if sr != 16000:
|
| 53 |
+
waveform = torchaudio.functional.resample(waveform, sr, 16000)
|
| 54 |
+
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
embedding = speaker_model.encode_batch(waveform.to(device))
|
| 57 |
+
# Normalize the embedding itself for model compatibility
|
| 58 |
+
embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
|
| 59 |
+
|
| 60 |
+
print("Speaker embedding created and cached.")
|
| 61 |
+
return embedding
|
| 62 |
|
| 63 |
+
# Path to the speaker audio and the cached embedding
|
| 64 |
+
SPEAKER_WAV = "1.wav"
|
| 65 |
EMB_PATH = "speaker_embedding.pt"
|
| 66 |
+
|
| 67 |
+
if not os.path.exists(SPEAKER_WAV):
|
| 68 |
+
raise FileNotFoundError(f"Error: Speaker audio file not found at '{SPEAKER_WAV}'. Please create this file.")
|
| 69 |
+
|
| 70 |
+
# Create and cache the embedding if it doesn't exist
|
| 71 |
if os.path.exists(EMB_PATH):
|
| 72 |
+
print("Loading cached speaker embedding.")
|
| 73 |
speaker_embedding = torch.load(EMB_PATH).to(device)
|
| 74 |
else:
|
| 75 |
+
speaker_embedding = create_speaker_embedding(SPEAKER_WAV)
|
| 76 |
+
# Cache the embedding for faster startups next time
|
| 77 |
+
torch.save(speaker_embedding.cpu(), EMB_PATH)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# --- Text Normalization (Somali) ---
|
| 81 |
+
# This function cleans the text and converts numbers to words.
|
| 82 |
+
|
| 83 |
+
def number_to_somali_words(num_str):
|
| 84 |
+
"""Converts a string of digits into Somali words."""
|
| 85 |
+
num = int(num_str)
|
| 86 |
+
if num < 0: return "eber ka yar" # Handle negative case
|
| 87 |
+
|
| 88 |
+
units = ["", "koow", "labo", "saddex", "afar", "shan", "lix", "toddobo", "siddeed", "sagaal"]
|
| 89 |
+
teens = ["toban", "kow iyo toban", "laba iyo toban", "saddex iyo toban", "afar iyo toban", "shan iyo toban", "lix iyo toban", "toddobo iyo toban", "siddeed iyo toban", "sagaal iyo toban"]
|
| 90 |
+
tens = ["", "toban", "labaatan", "soddon", "afartan", "konton", "lixdan", "toddobaatan", "siddeetan", "sagaashan"]
|
| 91 |
+
|
| 92 |
+
if num == 0: return "eber"
|
| 93 |
+
if num < 10: return units[num]
|
| 94 |
+
if num < 20: return teens[num-10]
|
| 95 |
+
if num < 100:
|
| 96 |
+
ten, unit = divmod(num, 10)
|
| 97 |
+
return tens[ten] + ((" iyo " + units[unit]) if unit != 0 else "")
|
| 98 |
+
if num < 1000:
|
| 99 |
+
hundred, rest = divmod(num, 100)
|
| 100 |
+
return (units[hundred] if hundred > 1 else "") + " boqol" + ((" iyo " + number_to_somali_words(str(rest))) if rest != 0 else "")
|
| 101 |
+
if num < 1000000:
|
| 102 |
+
thousand, rest = divmod(num, 1000)
|
| 103 |
+
return number_to_somali_words(str(thousand)) + " kun" + ((" iyo " + number_to_somali_words(str(rest))) if rest != 0 else "")
|
| 104 |
+
return num_str # Fallback for very large numbers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
def normalize_text(text):
|
| 107 |
+
"""Cleans and normalizes Somali text for TTS."""
|
| 108 |
text = text.lower()
|
| 109 |
+
# Convert numbers to words using a regex substitution
|
| 110 |
+
text = re.sub(r"\d+", lambda m: number_to_somali_words(m.group(0)), text)
|
| 111 |
+
# Remove special characters except for basic punctuation that might indicate pauses
|
| 112 |
+
text = re.sub(r'[^\w\s,\.]', '', text)
|
| 113 |
+
text = text.strip()
|
| 114 |
return text
|
| 115 |
|
| 116 |
+
|
| 117 |
+
# --- Core TTS Function ---
|
| 118 |
+
|
| 119 |
def text_to_speech(text):
|
| 120 |
+
"""
|
| 121 |
+
Generates speech from text, including pre- and post-processing steps.
|
| 122 |
+
"""
|
| 123 |
+
print(f"Received text: {text}")
|
| 124 |
+
# 1. Normalize the input text
|
| 125 |
+
normalized_text = normalize_text(text)
|
| 126 |
+
if not normalized_text:
|
| 127 |
+
print("Warning: Text is empty after normalization.")
|
| 128 |
+
# Return silence if there's no text to process
|
| 129 |
+
return (16000, np.zeros(16000).astype(np.int16))
|
| 130 |
+
|
| 131 |
+
print(f"Normalized text: {normalized_text}")
|
| 132 |
+
|
| 133 |
+
# 2. Process text and generate speech
|
| 134 |
+
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
| 135 |
with torch.no_grad():
|
| 136 |
+
speech_tensor = model.generate_speech(
|
| 137 |
+
inputs["input_ids"],
|
| 138 |
+
speaker_embedding.unsqueeze(0),
|
| 139 |
+
vocoder=vocoder
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
speech_numpy = speech_tensor.cpu().numpy()
|
| 143 |
+
|
| 144 |
+
# 3. Post-process the audio to make it sound more human
|
| 145 |
+
print("Post-processing generated audio...")
|
| 146 |
+
# Convert numpy array to a pydub AudioSegment
|
| 147 |
+
# Ensure numpy array is in the correct format (16-bit PCM)
|
| 148 |
+
audio_segment = AudioSegment(
|
| 149 |
+
speech_numpy.tobytes(),
|
| 150 |
+
frame_rate=16000,
|
| 151 |
+
sample_width=speech_numpy.dtype.itemsize,
|
| 152 |
+
channels=1
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Apply normalization - this is a key step for better quality
|
| 156 |
+
processed_audio = effects.normalize(audio_segment)
|
| 157 |
+
|
| 158 |
+
# Convert back to numpy array for Gradio output
|
| 159 |
+
processed_numpy = np.array(processed_audio.get_array_of_samples())
|
| 160 |
+
|
| 161 |
+
print("Speech generation complete.")
|
| 162 |
+
return (16000, processed_numpy)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# --- Gradio Web Interface ---
|
| 166 |
|
|
|
|
| 167 |
iface = gr.Interface(
|
| 168 |
fn=text_to_speech,
|
| 169 |
+
inputs=gr.Textbox(
|
| 170 |
+
label="Qoraalka Geli (Enter Somali Text)",
|
| 171 |
+
placeholder="Ku soo dhawaada barnaamijka codka ee Soomaaliyeed..."
|
| 172 |
+
),
|
| 173 |
+
outputs=gr.Audio(
|
| 174 |
+
label="Codka La Soo Saaray (Generated Audio)",
|
| 175 |
+
type="numpy"
|
| 176 |
+
),
|
| 177 |
+
title="🤖 Somali Text-to-Speech (Tayada Sare)",
|
| 178 |
+
description=(
|
| 179 |
+
"Ku qor qoraal af-Soomaali ah si aad ugu beddesho cod dabiici ah oo aad moodo mid dad."
|
| 180 |
+
"Codkan waxaa lagu sameeyay iyadoo la isticmaalayo faylka codka ee `1.wav`."
|
| 181 |
+
"\n\n(Enter Somali text to convert it to natural, human-like speech. "
|
| 182 |
+
"This voice was created using the `1.wav` audio file.)"
|
| 183 |
+
),
|
| 184 |
+
examples=[
|
| 185 |
+
["Sidee tahay saaxiib? Maanta waa maalin qurux badan."],
|
| 186 |
+
["Qiimaha badeecadani waa 2500 oo shilin."],
|
| 187 |
+
["Barnaamijkan waxaa sameeyay sirdoon macmal ah."],
|
| 188 |
+
]
|
| 189 |
)
|
| 190 |
|
| 191 |
+
if __name__ == "__main__":
|
| 192 |
+
iface.launch(share=True) # Set share=True to get a public link
|