Somalitts commited on
Commit
2e7b63f
·
verified ·
1 Parent(s): bd60963

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -19
app.py CHANGED
@@ -10,15 +10,15 @@ import numpy as np
10
  # --- Configuration ---
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
- # --- HUBI INAAD SOO GELISAY FAYLASHAN ---
14
- # Faylashan waa inay ku jiraan Hugging Face Spaces, isla galka uu ku jiro "app.py"
15
  VOICE_SAMPLE_FILES = ["1.wav"]
16
 
17
- # Directory to store speaker embedding files
18
  EMBEDDING_DIR = "speaker_embeddings"
19
  os.makedirs(EMBEDDING_DIR, exist_ok=True)
20
 
21
- # --- Load Models ---
22
  try:
23
  print("Loading models... This may take a moment.")
24
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
@@ -38,51 +38,120 @@ speaker_embeddings_cache = {}
38
  def get_speaker_embedding(wav_file_path):
39
  if wav_file_path in speaker_embeddings_cache:
40
  return speaker_embeddings_cache[wav_file_path]
 
41
  embedding_path = os.path.join(EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt")
 
42
  if os.path.exists(embedding_path):
 
43
  embedding = torch.load(embedding_path, map_location=device)
44
  speaker_embeddings_cache[wav_file_path] = embedding
45
  return embedding
 
 
46
  if not os.path.exists(wav_file_path):
47
- # Kani waa qaladka dhacay. Markaad faylasha soo geliso, meeshan wuu ka gudbayaa.
48
- raise FileNotFoundError(f"Lama helin faylka codka: {wav_file_path}")
49
  try:
50
  audio, sr = torchaudio.load(wav_file_path)
51
- if sr != 16000: audio = torchaudio.functional.resample(audio, sr, 16000)
52
- if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True)
 
 
 
53
  with torch.no_grad():
54
  embedding = speaker_model.encode_batch(audio.to(device))
55
  embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
 
56
  torch.save(embedding.cpu(), embedding_path)
57
  speaker_embeddings_cache[wav_file_path] = embedding.to(device)
 
58
  return embedding.to(device)
59
  except Exception as e:
60
  raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
61
 
62
- # ... (Inta kale ee koodhka way saxantahay) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- # --- Main Text-to-Speech Function ---
65
  def text_to_speech(text, voice_choice):
66
- # ... (sidaadii hore) ...
67
- pass # Koodhka intiisa kale halkan geli
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  # --- Gradio Interface ---
70
  iface = gr.Interface(
71
- # ... (sidaadii hore) ...
72
- pass # Koodhka intiisa kale halkan geli
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  )
74
 
75
  # --- Launch the web interface ---
76
  if __name__ == "__main__":
77
- print("Hubinta faylasha codadka...")
 
78
  for f in VOICE_SAMPLE_FILES:
79
  if not os.path.exists(f):
80
- # Qaladku halkan ayuu ka bilaabmayaa
81
- raise FileNotFoundError(f"Mid ka mid ah faylasha lama helin: '{f}'. Fadlan hubi inaad soo gelisay Hugging Face Spaces.")
82
 
83
- print("Diyaarinta astaamaha codadka...")
84
  for voice_file in VOICE_SAMPLE_FILES:
85
  get_speaker_embedding(voice_file)
86
- print("Dhammaan codadka waa diyaar. Waxaa la furayaa interface-ka.")
87
 
88
  iface.launch(share=True)
 
10
  # --- Configuration ---
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
+ # --- KU DAR FAYLASHA CODADKAAGA ---
14
+ # HUBI INAAD FAYLASHAN SOO GELISAY HUGGING FACE SPACES
15
  VOICE_SAMPLE_FILES = ["1.wav"]
16
 
17
+ # Galka lagu keydinayo astaamaha codka
18
  EMBEDDING_DIR = "speaker_embeddings"
19
  os.makedirs(EMBEDDING_DIR, exist_ok=True)
20
 
21
+ # --- Soo Dejinta Model-yada ---
22
  try:
23
  print("Loading models... This may take a moment.")
24
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
38
  def get_speaker_embedding(wav_file_path):
39
  if wav_file_path in speaker_embeddings_cache:
40
  return speaker_embeddings_cache[wav_file_path]
41
+
42
  embedding_path = os.path.join(EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt")
43
+
44
  if os.path.exists(embedding_path):
45
+ print(f"Loading existing embedding for {wav_file_path}")
46
  embedding = torch.load(embedding_path, map_location=device)
47
  speaker_embeddings_cache[wav_file_path] = embedding
48
  return embedding
49
+
50
+ print(f"Creating new speaker embedding for {wav_file_path}...")
51
  if not os.path.exists(wav_file_path):
52
+ raise gr.Error(f"Audio file not found: {wav_file_path}.")
53
+
54
  try:
55
  audio, sr = torchaudio.load(wav_file_path)
56
+ if sr != 16000:
57
+ audio = torchaudio.functional.resample(audio, sr, 16000)
58
+ if audio.shape[0] > 1:
59
+ audio = torch.mean(audio, dim=0, keepdim=True)
60
+
61
  with torch.no_grad():
62
  embedding = speaker_model.encode_batch(audio.to(device))
63
  embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
64
+
65
  torch.save(embedding.cpu(), embedding_path)
66
  speaker_embeddings_cache[wav_file_path] = embedding.to(device)
67
+ print(f"Embedding created and saved for {wav_file_path}.")
68
  return embedding.to(device)
69
  except Exception as e:
70
  raise gr.Error(f"Could not process audio file {wav_file_path}. Error: {e}")
71
 
72
+ # --- Text Processing Functions ---
73
+ number_words = {
74
+ 0: "eber", 1: "kow", 2: "labo", 3: "saddex", 4: "afar", 5: "shan",
75
+ 6: "lix", 7: "toddobo", 8: "siddeed", 9: "sagaal", 10: "toban",
76
+ 11: "kow iyo toban", 12: "labo iyo toban", 13: "saddex iyo toban",
77
+ 14: "afar iyo toban", 15: "shan iyo toban", 16: "lix iyo toban",
78
+ 17: "toddobo iyo toban", 18: "siddeed iyo toban", 19: "sagaal iyo toban",
79
+ 20: "labaatan", 30: "soddon", 40: "afartan", 50: "konton",
80
+ 60: "lixdan", 70: "toddobaatan", 80: "siddeetan", 90: "sagaashan",
81
+ 100: "boqol", 1000: "kun",
82
+ }
83
+ def number_to_words(n):
84
+ if n in number_words: return number_words[n]
85
+ if n < 100: return number_words[n//10 * 10] + (" iyo " + number_words[n%10] if n%10 else "")
86
+ if n < 1000: return (number_words[n//100] + " boqol" if n//100 > 1 else "boqol") + (" iyo " + number_to_words(n%100) if n%100 else "")
87
+ if n < 1000000: return (number_to_words(n//1000) + " kun" if n//1000 > 1 else "kun") + (" iyo " + number_to_words(n%1000) if n%1000 else "")
88
+ return str(n)
89
+ def replace_numbers_with_words(text):
90
+ return re.sub(r'\b\d+\b', lambda m: number_to_words(int(m.group())), text)
91
+ def normalize_text(text):
92
+ text = text.lower()
93
+ text = replace_numbers_with_words(text)
94
+ text = re.sub(r'[^\w\s\']', '', text)
95
+ return text
96
 
97
+ # --- Main Text-to-Speech Function (with quality improvements) ---
98
  def text_to_speech(text, voice_choice):
99
+ if not text:
100
+ gr.Warning("Please enter some text.")
101
+ return None, None
102
+ if not voice_choice:
103
+ gr.Warning("Please select a voice from the dropdown.")
104
+ return None, None
105
+
106
+ speaker_embedding = get_speaker_embedding(voice_choice)
107
+ normalized_text = normalize_text(text)
108
+ inputs = processor(text=normalized_text, return_tensors="pt").to(device)
109
+
110
+ with torch.no_grad():
111
+ # Using model.generate with sampling for more natural speech
112
+ speech = model.generate(
113
+ input_ids=inputs["input_ids"],
114
+ speaker_embeddings=speaker_embedding.unsqueeze(0),
115
+ do_sample=True,
116
+ top_k=50,
117
+ )
118
+ # Apply the vocoder separately
119
+ speech = vocoder(speech)
120
+
121
+ return (16000, speech.cpu().numpy())
122
 
123
  # --- Gradio Interface ---
124
  iface = gr.Interface(
125
+ fn=text_to_speech,
126
+ inputs=[
127
+ gr.Textbox(label="Geli qoraalka af-Soomaaliga (Enter Somali Text)"),
128
+ gr.Dropdown(
129
+ VOICE_SAMPLE_FILES,
130
+ label="Select Voice",
131
+ info="Choose the voice you want to use for the speech.",
132
+ value=VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else None
133
+ )
134
+ ],
135
+ outputs=gr.Audio(label="Codka La Abuuray (Generated Voice)", type="numpy"),
136
+ title="Multi-Voice Somali Text-to-Speech",
137
+ description="Enter Somali text, choose a voice from the dropdown, and click submit to generate speech.",
138
+ examples=[
139
+ ["Sidee tahay saaxiib? Maanta waa maalin wanaagsan.", VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else ''],
140
+ ["Nabad gelyo, is arag dambe.", VOICE_SAMPLE_FILES[1] if len(VOICE_SAMPLE_FILES) > 1 else (VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else '')],
141
+ ]
142
  )
143
 
144
  # --- Launch the web interface ---
145
  if __name__ == "__main__":
146
+ # This check will run first. If it fails, the app will stop.
147
+ print("Checking for voice files...")
148
  for f in VOICE_SAMPLE_FILES:
149
  if not os.path.exists(f):
150
+ raise FileNotFoundError(f"Voice file not found: '{f}'. Please upload it to your Hugging Face Space.")
 
151
 
152
+ print("Pre-loading all voice embeddings...")
153
  for voice_file in VOICE_SAMPLE_FILES:
154
  get_speaker_embedding(voice_file)
155
+ print("All voices are ready. Launching interface.")
156
 
157
  iface.launch(share=True)