Update app.py
Browse files
app.py
CHANGED
|
@@ -8,35 +8,64 @@ import gradio as gr
|
|
| 8 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 9 |
from speechbrain.inference.speaker import EncoderClassifier
|
| 10 |
|
|
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
-
CACHE_DIR = "/tmp/hf-cache"
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
# Speaker embedding
|
| 26 |
-
def get_embedding(wav_path, pt_path):
|
| 27 |
-
if os.path.exists(pt_path):
|
| 28 |
-
return torch.load(pt_path).to(device)
|
| 29 |
-
audio, sr = torchaudio.load(wav_path)
|
| 30 |
-
audio = torchaudio.functional.resample(audio, sr, 16000).mean(dim=0).unsqueeze(0).to(device)
|
| 31 |
with torch.no_grad():
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
torch.save(emb.cpu(), pt_path)
|
| 35 |
-
return emb
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
# Text
|
| 40 |
number_words = {
|
| 41 |
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
|
| 42 |
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
|
|
@@ -46,19 +75,17 @@ number_words = {
|
|
| 46 |
}
|
| 47 |
|
| 48 |
def number_to_words(n):
|
| 49 |
-
if n < 20:
|
| 50 |
-
|
| 51 |
-
elif n < 100:
|
| 52 |
tens, unit = divmod(n, 10)
|
| 53 |
-
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
| 54 |
-
|
| 55 |
hundreds, rem = divmod(n, 100)
|
| 56 |
-
return (number_words[hundreds] + " boqol" if hundreds > 1 else "boqol") + (" " + number_to_words(rem) if rem else "")
|
| 57 |
-
|
| 58 |
th, rem = divmod(n, 1000)
|
| 59 |
-
return (number_to_words(th) + " kun") + (" " + number_to_words(rem) if rem else "")
|
| 60 |
-
|
| 61 |
-
return str(n)
|
| 62 |
|
| 63 |
def replace_numbers_with_words(text):
|
| 64 |
return re.sub(r'\b\d+\b', lambda m: number_to_words(int(m.group())), text)
|
|
@@ -66,28 +93,58 @@ def replace_numbers_with_words(text):
|
|
| 66 |
def normalize_text(text):
|
| 67 |
text = text.lower()
|
| 68 |
text = replace_numbers_with_words(text)
|
| 69 |
-
text = re.sub(r'[^\w\s]', '', text)
|
| 70 |
return text
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
clean_text = normalize_text(text)
|
| 75 |
inputs = processor(text=clean_text, return_tensors="pt").to(device)
|
| 76 |
|
| 77 |
with torch.no_grad():
|
| 78 |
-
waveform =
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
sf.write(out_path, waveform.cpu().numpy(), 16000)
|
| 82 |
return out_path
|
| 83 |
|
| 84 |
-
# Gradio
|
|
|
|
| 85 |
iface = gr.Interface(
|
| 86 |
-
fn=
|
| 87 |
-
inputs=
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 9 |
from speechbrain.inference.speaker import EncoderClassifier
|
| 10 |
|
| 11 |
+
# --- Configuration ---
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 13 |
|
| 14 |
+
# --- TALLAABADA 1: KU DAR MAGACYADA FAYLASHAADA CODADKA HAKAAN ---
|
| 15 |
+
# Hubi in faylashan ay ku jiraan isla galka uu koodhkani ku jiro.
|
| 16 |
+
# Ku beddel magacyadan kuwaaga dhabta ah. Waa inay noqdaan faylal .wav ah.
|
| 17 |
+
VOICE_SAMPLE_FILES = ["1.wav", "90.wav"]
|
| 18 |
|
| 19 |
+
# Meelaha lagu keydinayo faylasha ku meel gaarka ah
|
| 20 |
+
CACHE_DIR = "hf_cache"
|
| 21 |
+
SPEAKER_EMBEDDING_DIR = "speaker_embeddings"
|
| 22 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 23 |
+
os.makedirs(SPEAKER_EMBEDDING_DIR, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
# --- Soo Dejinta Model-yada ---
|
| 26 |
+
try:
|
| 27 |
+
print("Waxaa la soo dejinayaa model-yada...")
|
| 28 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts", cache_dir=CACHE_DIR)
|
| 29 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan", cache_dir=CACHE_DIR).to(device)
|
| 30 |
+
# Magaca model-ka waxaan ka beddelnay 'model_female' oo ka dhignay 'model' maadaama uu hadda codad kala duwan isticmaalayo
|
| 31 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad", cache_dir=CACHE_DIR).to(device)
|
| 32 |
+
speaker_model = EncoderClassifier.from_hparams(
|
| 33 |
+
source="speechbrain/spkrec-xvect-voxceleb",
|
| 34 |
+
run_opts={"device": device},
|
| 35 |
+
savedir=os.path.join(CACHE_DIR, "spk_model")
|
| 36 |
+
)
|
| 37 |
+
print("Model-yadii waa diyaar.")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
raise gr.Error(f"Cillad ayaa ka timid soo dejinta model-yada: {e}. Hubi internet-kaaga.")
|
| 40 |
+
|
| 41 |
+
# --- Shaqada Abuurista Astaanta Codka (Speaker Embedding) ---
|
| 42 |
+
def get_speaker_embedding(wav_file_path):
|
| 43 |
+
"""
|
| 44 |
+
Shaqadan waxay soo saaraysaa "astaanta codka" (speaker embedding)
|
| 45 |
+
haddii aysan jirin, way abuuraysaa oo keydinaysaa si aan mar dambe loo sugin.
|
| 46 |
+
"""
|
| 47 |
+
embedding_path = os.path.join(SPEAKER_EMBEDDING_DIR, f"{os.path.basename(wav_file_path)}.pt")
|
| 48 |
+
|
| 49 |
+
if os.path.exists(embedding_path):
|
| 50 |
+
return torch.load(embedding_path, map_location=device)
|
| 51 |
+
|
| 52 |
+
if not os.path.exists(wav_file_path):
|
| 53 |
+
raise gr.Error(f"Lama helin faylka codka: {wav_file_path}. Hubi inuu ku jiro galka saxda ah oo magaca si sax ah u qortay.")
|
| 54 |
+
|
| 55 |
+
print(f"Waxaa la abuurayaa astaan cod oo cusub: {wav_file_path}")
|
| 56 |
+
audio, sr = torchaudio.load(wav_file_path)
|
| 57 |
+
if sr != 16000:
|
| 58 |
+
audio = torchaudio.functional.resample(audio, sr, 16000)
|
| 59 |
+
audio = audio.mean(dim=0).unsqueeze(0).to(device)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with torch.no_grad():
|
| 62 |
+
embedding = speaker_model.encode_batch(audio)
|
| 63 |
+
embedding = torch.nn.functional.normalize(embedding, dim=2).squeeze()
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
torch.save(embedding.cpu(), embedding_path)
|
| 66 |
+
return embedding
|
| 67 |
|
| 68 |
+
# --- Hagaajinta Qoraalka (Text Normalization) ---
|
| 69 |
number_words = {
|
| 70 |
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
|
| 71 |
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
|
|
|
|
| 75 |
}
|
| 76 |
|
| 77 |
def number_to_words(n):
|
| 78 |
+
if n < 20: return number_words.get(n, str(n))
|
| 79 |
+
if n < 100:
|
|
|
|
| 80 |
tens, unit = divmod(n, 10)
|
| 81 |
+
return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
|
| 82 |
+
if n < 1000:
|
| 83 |
hundreds, rem = divmod(n, 100)
|
| 84 |
+
return (number_words[hundreds] + " boqol" if hundreds > 1 else "boqol") + (" iyo " + number_to_words(rem) if rem else "")
|
| 85 |
+
if n < 1_000_000:
|
| 86 |
th, rem = divmod(n, 1000)
|
| 87 |
+
return (number_to_words(th) + " kun") + (" iyo " + number_to_words(rem) if rem else "")
|
| 88 |
+
return str(n)
|
|
|
|
| 89 |
|
| 90 |
def replace_numbers_with_words(text):
|
| 91 |
return re.sub(r'\b\d+\b', lambda m: number_to_words(int(m.group())), text)
|
|
|
|
| 93 |
def normalize_text(text):
|
| 94 |
text = text.lower()
|
| 95 |
text = replace_numbers_with_words(text)
|
| 96 |
+
text = re.sub(r'[^\w\s\']', '', text)
|
| 97 |
return text
|
| 98 |
|
| 99 |
+
# --- Shaqada ugu Muhiimsan (TTS Function) ---
|
| 100 |
+
def text_to_speech(text, voice_choice):
|
| 101 |
+
""" Hadda shaqadani waxay qaadanaysaa qoraalka iyo codka la doortay """
|
| 102 |
+
if not text or not voice_choice:
|
| 103 |
+
gr.Warning("Fadlan geli qoraal oo dooro cod.")
|
| 104 |
+
return None
|
| 105 |
+
|
| 106 |
+
# Soo qaado astaanta codka la doortay
|
| 107 |
+
speaker_embedding = get_speaker_embedding(voice_choice)
|
| 108 |
+
|
| 109 |
clean_text = normalize_text(text)
|
| 110 |
inputs = processor(text=clean_text, return_tensors="pt").to(device)
|
| 111 |
|
| 112 |
with torch.no_grad():
|
| 113 |
+
waveform = model.generate_speech(inputs["input_ids"], speaker_embedding.unsqueeze(0), vocoder=vocoder)
|
| 114 |
|
| 115 |
+
# Si ku meel gaar ah u keydi faylka codka la abuuray
|
| 116 |
+
os.makedirs("/tmp/tts_outputs", exist_ok=True)
|
| 117 |
+
out_path = f"/tmp/tts_outputs/{uuid.uuid4().hex}.wav"
|
| 118 |
sf.write(out_path, waveform.cpu().numpy(), 16000)
|
| 119 |
return out_path
|
| 120 |
|
| 121 |
+
# --- Interface-ka Gradio ---
|
| 122 |
+
# Hadda wuxuu leeyahay meel qoraalka la geliyo iyo meel codka laga doorto
|
| 123 |
iface = gr.Interface(
|
| 124 |
+
fn=text_to_speech,
|
| 125 |
+
inputs=[
|
| 126 |
+
gr.Textbox(label="Geli qoraalka af Soomaali"),
|
| 127 |
+
gr.Dropdown(
|
| 128 |
+
choices=VOICE_SAMPLE_FILES,
|
| 129 |
+
label="Dooro Codkaaga (Select Your Voice)",
|
| 130 |
+
value=VOICE_SAMPLE_FILES[0] if VOICE_SAMPLE_FILES else None,
|
| 131 |
+
info="Dooro mid ka mid ah codadkaaga aad diyaarisay."
|
| 132 |
+
)
|
| 133 |
+
],
|
| 134 |
+
outputs=gr.Audio(label="Codka La Abuuray", type="filepath"),
|
| 135 |
+
title="Soomaali Text-to-Speech (Codad Kala Duwan)",
|
| 136 |
+
description="Ku qor qoraal Soomaali ah, dooro codka aad rabto, kadibna riix 'Submit' si aad cod ugu dhageysato."
|
| 137 |
)
|
| 138 |
|
| 139 |
+
# Diyaari codadka ka hor inta aan barnaamijka la furin
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
print("Hubinta faylasha codadka...")
|
| 142 |
+
if not VOICE_SAMPLE_FILES or not all(os.path.exists(f) for f in VOICE_SAMPLE_FILES):
|
| 143 |
+
raise FileNotFoundError("Mid ka mid ah faylasha ku jira 'VOICE_SAMPLE_FILES' lama helin. Fadlan hubi magacyada iyo meesha ay ku jiraan.")
|
| 144 |
+
|
| 145 |
+
print("Diyaarinta codadkaaga...")
|
| 146 |
+
for voice in VOICE_SAMPLE_FILES:
|
| 147 |
+
get_speaker_embedding(voice) # Tani waxay abuuraysaa astaamaha codka haddii aysan jirin
|
| 148 |
+
print("Dhammaan waa diyaar. Barnaamijku wuu furmayaa.")
|
| 149 |
+
|
| 150 |
+
iface.launch(share=True)
|