Update app.py
Browse files
app.py
CHANGED
|
@@ -39,41 +39,9 @@ tone_color_converter = ToneColorConverter(ckpt_converter)
|
|
| 39 |
# Device setting
|
| 40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 47 |
-
# tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
| 48 |
-
# final_output_path = f"{output_dir}/{base_name}_converted.wav"
|
| 49 |
-
|
| 50 |
-
# # Use English speaker model
|
| 51 |
-
# model = TTS(language="EN", device=device)
|
| 52 |
-
# speaker_ids = model.hps.data.spk2id
|
| 53 |
-
# default_speaker_id = next(iter(speaker_ids.values()))
|
| 54 |
-
|
| 55 |
-
# # Generate base TTS voice
|
| 56 |
-
# speed = 1.0
|
| 57 |
-
# model.tts_to_file(text, default_speaker_id, tmp_melo_path,speed=speed)
|
| 58 |
-
|
| 59 |
-
# # Use speaker_wav as reference to extract style embedding
|
| 60 |
-
# from openvoice import se_extractor
|
| 61 |
-
# ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=True)
|
| 62 |
-
|
| 63 |
-
# # Run the tone conversion
|
| 64 |
-
# tone_color_converter.convert(
|
| 65 |
-
# audio_src_path=tmp_melo_path,
|
| 66 |
-
# src_se=ref_se,
|
| 67 |
-
# tgt_se=ref_se,
|
| 68 |
-
# output_path=final_output_path,
|
| 69 |
-
# message="@HuggingFace",
|
| 70 |
-
# )
|
| 71 |
-
|
| 72 |
-
# return final_output_path
|
| 73 |
-
|
| 74 |
-
def clone_and_speak(text, selected_speaker_key):
|
| 75 |
-
if not text or not selected_speaker_key:
|
| 76 |
-
return "Please enter text and select a speaker."
|
| 77 |
|
| 78 |
base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 79 |
tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
|
@@ -82,34 +50,25 @@ def clone_and_speak(text, selected_speaker_key):
|
|
| 82 |
# Use English speaker model
|
| 83 |
model = TTS(language="EN", device=device)
|
| 84 |
speaker_ids = model.hps.data.spk2id
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
speaker_id = speaker_ids[selected_speaker_key]
|
| 91 |
|
| 92 |
# Generate base TTS voice
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# Load pre-saved speaker embedding
|
| 97 |
-
normalized_key = selected_speaker_key.lower().replace("_", "-")
|
| 98 |
-
se_path = f'checkpoints_v2/base_speakers/ses/{normalized_key}.pth'
|
| 99 |
-
|
| 100 |
-
if not os.path.isfile(se_path):
|
| 101 |
-
return f"SE file not found for speaker '{normalized_key}'."
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
if torch.backends.mps.is_available() and device == 'cpu':
|
| 107 |
-
torch.backends.mps.is_available = lambda: False
|
| 108 |
|
| 109 |
# Run the tone conversion
|
| 110 |
-
|
| 111 |
audio_src_path=tmp_melo_path,
|
| 112 |
-
src_se=
|
| 113 |
tgt_se=ref_se,
|
| 114 |
output_path=final_output_path,
|
| 115 |
message="@HuggingFace",
|
|
@@ -118,18 +77,20 @@ def clone_and_speak(text, selected_speaker_key):
|
|
| 118 |
return final_output_path
|
| 119 |
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
|
| 134 |
iface = gr.Interface(
|
| 135 |
fn=clone_with_base_speaker,
|
|
|
|
| 39 |
# Device setting
|
| 40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
|
| 42 |
+
def clone_and_speak(text, speaker_wav):
|
| 43 |
+
if not speaker_wav:
|
| 44 |
+
return "Please upload a reference .wav file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 47 |
tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
|
|
|
| 50 |
# Use English speaker model
|
| 51 |
model = TTS(language="EN", device=device)
|
| 52 |
speaker_ids = model.hps.data.spk2id
|
| 53 |
+
#default_speaker_id = next(iter(speaker_ids.values()))
|
| 54 |
|
| 55 |
+
for speaker_key in speaker_ids.keys():
|
| 56 |
+
speaker_id = speaker_ids[speaker_key]
|
| 57 |
+
speaker_key = speaker_key.lower().replace('_', '-')
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# Generate base TTS voice
|
| 60 |
+
speed = 1.0
|
| 61 |
+
source_se = torch.load(f'checkpoints_v2/base_speakers/ses/{speaker_key}.pth', map_location=device)
|
| 62 |
+
model.tts_to_file(text, speaker_id, tmp_melo_path,speed=speed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Use speaker_wav as reference to extract style embedding
|
| 65 |
+
from openvoice import se_extractor
|
| 66 |
+
ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=True)
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Run the tone conversion
|
| 69 |
+
tone_color_converter.convert(
|
| 70 |
audio_src_path=tmp_melo_path,
|
| 71 |
+
src_se=source_se,
|
| 72 |
tgt_se=ref_se,
|
| 73 |
output_path=final_output_path,
|
| 74 |
message="@HuggingFace",
|
|
|
|
| 77 |
return final_output_path
|
| 78 |
|
| 79 |
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
Gradio interface
|
| 83 |
+
gr.Interface(
|
| 84 |
+
fn=clone_and_speak,
|
| 85 |
+
inputs=[
|
| 86 |
+
gr.Textbox(label="Enter Text"),
|
| 87 |
+
gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)")
|
| 88 |
+
],
|
| 89 |
+
outputs=gr.Audio(label="Synthesized Output"),
|
| 90 |
+
flagging_dir="/tmp/flagged",
|
| 91 |
+
title="Text to Voice using Melo TTS + OpenVoice",
|
| 92 |
+
description="Use Melo TTS for base synthesis and OpenVoice to apply a reference speaker's tone.",
|
| 93 |
+
).launch()
|
| 94 |
|
| 95 |
iface = gr.Interface(
|
| 96 |
fn=clone_with_base_speaker,
|