Update openvoice/api.py
Browse files- openvoice/api.py +202 -202
openvoice/api.py
CHANGED
|
@@ -1,202 +1,202 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import numpy as np
|
| 3 |
-
import re
|
| 4 |
-
import soundfile
|
| 5 |
-
from openvoice import utils
|
| 6 |
-
from openvoice import commons
|
| 7 |
-
import os
|
| 8 |
-
import librosa
|
| 9 |
-
from openvoice.text import text_to_sequence
|
| 10 |
-
from openvoice.mel_processing import spectrogram_torch
|
| 11 |
-
from openvoice.models import SynthesizerTrn
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
class OpenVoiceBaseClass(object):
|
| 15 |
-
def __init__(self,
|
| 16 |
-
config_path,
|
| 17 |
-
device='cuda:0'):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
hps = utils.get_hparams_from_file(config_path)
|
| 22 |
-
|
| 23 |
-
model = SynthesizerTrn(
|
| 24 |
-
len(getattr(hps, 'symbols', [])),
|
| 25 |
-
hps.data.filter_length // 2 + 1,
|
| 26 |
-
n_speakers=hps.data.n_speakers,
|
| 27 |
-
**hps.model,
|
| 28 |
-
).to(device)
|
| 29 |
-
|
| 30 |
-
model.eval()
|
| 31 |
-
self.model = model
|
| 32 |
-
self.hps = hps
|
| 33 |
-
self.device = device
|
| 34 |
-
|
| 35 |
-
def load_ckpt(self, ckpt_path):
|
| 36 |
-
checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device))
|
| 37 |
-
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
|
| 38 |
-
print("Loaded checkpoint '{}'".format(ckpt_path))
|
| 39 |
-
print('missing/unexpected keys:', a, b)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class BaseSpeakerTTS(OpenVoiceBaseClass):
|
| 43 |
-
language_marks = {
|
| 44 |
-
"english": "EN",
|
| 45 |
-
"chinese": "ZH",
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
@staticmethod
|
| 49 |
-
def get_text(text, hps, is_symbol):
|
| 50 |
-
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
| 51 |
-
if hps.data.add_blank:
|
| 52 |
-
text_norm = commons.intersperse(text_norm, 0)
|
| 53 |
-
text_norm = torch.LongTensor(text_norm)
|
| 54 |
-
return text_norm
|
| 55 |
-
|
| 56 |
-
@staticmethod
|
| 57 |
-
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
| 58 |
-
audio_segments = []
|
| 59 |
-
for segment_data in segment_data_list:
|
| 60 |
-
audio_segments += segment_data.reshape(-1).tolist()
|
| 61 |
-
audio_segments += [0] * int((sr * 0.05)/speed)
|
| 62 |
-
audio_segments = np.array(audio_segments).astype(np.float32)
|
| 63 |
-
return audio_segments
|
| 64 |
-
|
| 65 |
-
@staticmethod
|
| 66 |
-
def split_sentences_into_pieces(text, language_str):
|
| 67 |
-
texts = utils.split_sentence(text, language_str=language_str)
|
| 68 |
-
print(" > Text splitted to sentences.")
|
| 69 |
-
print('\n'.join(texts))
|
| 70 |
-
print(" > ===========================")
|
| 71 |
-
return texts
|
| 72 |
-
|
| 73 |
-
def tts(self, text, output_path, speaker, language='English', speed=1.0):
|
| 74 |
-
mark = self.language_marks.get(language.lower(), None)
|
| 75 |
-
assert mark is not None, f"language {language} is not supported"
|
| 76 |
-
|
| 77 |
-
texts = self.split_sentences_into_pieces(text, mark)
|
| 78 |
-
|
| 79 |
-
audio_list = []
|
| 80 |
-
for t in texts:
|
| 81 |
-
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
|
| 82 |
-
t = f'[{mark}]{t}[{mark}]'
|
| 83 |
-
stn_tst = self.get_text(t, self.hps, False)
|
| 84 |
-
device = self.device
|
| 85 |
-
speaker_id = self.hps.speakers[speaker]
|
| 86 |
-
with torch.no_grad():
|
| 87 |
-
x_tst = stn_tst.unsqueeze(0).to(device)
|
| 88 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
| 89 |
-
sid = torch.LongTensor([speaker_id]).to(device)
|
| 90 |
-
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6,
|
| 91 |
-
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
| 92 |
-
audio_list.append(audio)
|
| 93 |
-
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)
|
| 94 |
-
|
| 95 |
-
if output_path is None:
|
| 96 |
-
return audio
|
| 97 |
-
else:
|
| 98 |
-
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
class ToneColorConverter(OpenVoiceBaseClass):
|
| 102 |
-
def __init__(self, *args, **kwargs):
|
| 103 |
-
super().__init__(*args, **kwargs)
|
| 104 |
-
|
| 105 |
-
if kwargs.get('enable_watermark', True):
|
| 106 |
-
import wavmark
|
| 107 |
-
self.watermark_model = wavmark.load_model().to(self.device)
|
| 108 |
-
else:
|
| 109 |
-
self.watermark_model = None
|
| 110 |
-
self.version = getattr(self.hps, '_version_', "v1")
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def extract_se(self, ref_wav_list, se_save_path=None):
|
| 115 |
-
if isinstance(ref_wav_list, str):
|
| 116 |
-
ref_wav_list = [ref_wav_list]
|
| 117 |
-
|
| 118 |
-
device = self.device
|
| 119 |
-
hps = self.hps
|
| 120 |
-
gs = []
|
| 121 |
-
|
| 122 |
-
for fname in ref_wav_list:
|
| 123 |
-
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate)
|
| 124 |
-
y = torch.FloatTensor(audio_ref)
|
| 125 |
-
y = y.to(device)
|
| 126 |
-
y = y.unsqueeze(0)
|
| 127 |
-
y = spectrogram_torch(y, hps.data.filter_length,
|
| 128 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 129 |
-
center=False).to(device)
|
| 130 |
-
with torch.no_grad():
|
| 131 |
-
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
| 132 |
-
gs.append(g.detach())
|
| 133 |
-
gs = torch.stack(gs).mean(0)
|
| 134 |
-
|
| 135 |
-
if se_save_path is not None:
|
| 136 |
-
os.makedirs(os.path.dirname(se_save_path), exist_ok=True)
|
| 137 |
-
torch.save(gs.cpu(), se_save_path)
|
| 138 |
-
|
| 139 |
-
return gs
|
| 140 |
-
|
| 141 |
-
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="default"):
|
| 142 |
-
hps = self.hps
|
| 143 |
-
# load audio
|
| 144 |
-
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate)
|
| 145 |
-
audio = torch.tensor(audio).float()
|
| 146 |
-
|
| 147 |
-
with torch.no_grad():
|
| 148 |
-
y = torch.FloatTensor(audio).to(self.device)
|
| 149 |
-
y = y.unsqueeze(0)
|
| 150 |
-
spec = spectrogram_torch(y, hps.data.filter_length,
|
| 151 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 152 |
-
center=False).to(self.device)
|
| 153 |
-
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device)
|
| 154 |
-
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][
|
| 155 |
-
0, 0].data.cpu().float().numpy()
|
| 156 |
-
audio = self.add_watermark(audio, message)
|
| 157 |
-
if output_path is None:
|
| 158 |
-
return audio
|
| 159 |
-
else:
|
| 160 |
-
soundfile.write(output_path, audio, hps.data.sampling_rate)
|
| 161 |
-
|
| 162 |
-
def add_watermark(self, audio, message):
|
| 163 |
-
if self.watermark_model is None:
|
| 164 |
-
return audio
|
| 165 |
-
device = self.device
|
| 166 |
-
bits = utils.string_to_bits(message).reshape(-1)
|
| 167 |
-
n_repeat = len(bits) // 32
|
| 168 |
-
|
| 169 |
-
K = 16000
|
| 170 |
-
coeff = 2
|
| 171 |
-
for n in range(n_repeat):
|
| 172 |
-
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
| 173 |
-
if len(trunck) != K:
|
| 174 |
-
print('Audio too short, fail to add watermark')
|
| 175 |
-
break
|
| 176 |
-
message_npy = bits[n * 32: (n + 1) * 32]
|
| 177 |
-
|
| 178 |
-
with torch.no_grad():
|
| 179 |
-
signal = torch.FloatTensor(trunck).to(device)[None]
|
| 180 |
-
message_tensor = torch.FloatTensor(message_npy).to(device)[None]
|
| 181 |
-
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
|
| 182 |
-
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
|
| 183 |
-
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
|
| 184 |
-
return audio
|
| 185 |
-
|
| 186 |
-
def detect_watermark(self, audio, n_repeat):
|
| 187 |
-
bits = []
|
| 188 |
-
K = 16000
|
| 189 |
-
coeff = 2
|
| 190 |
-
for n in range(n_repeat):
|
| 191 |
-
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
| 192 |
-
if len(trunck) != K:
|
| 193 |
-
print('Audio too short, fail to detect watermark')
|
| 194 |
-
return 'Fail'
|
| 195 |
-
with torch.no_grad():
|
| 196 |
-
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0)
|
| 197 |
-
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze()
|
| 198 |
-
bits.append(message_decoded_npy)
|
| 199 |
-
bits = np.stack(bits).reshape(-1, 8)
|
| 200 |
-
message = utils.bits_to_string(bits)
|
| 201 |
-
return message
|
| 202 |
-
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import re
|
| 4 |
+
import soundfile
|
| 5 |
+
from openvoice import utils
|
| 6 |
+
from openvoice import commons
|
| 7 |
+
import os
|
| 8 |
+
import librosa
|
| 9 |
+
from openvoice.text import text_to_sequence
|
| 10 |
+
from openvoice.mel_processing import spectrogram_torch
|
| 11 |
+
from openvoice.models import SynthesizerTrn
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class OpenVoiceBaseClass(object):
|
| 15 |
+
def __init__(self,
|
| 16 |
+
config_path,
|
| 17 |
+
device='cuda:0'):
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
print(f"Using device: {device}")
|
| 20 |
+
|
| 21 |
+
hps = utils.get_hparams_from_file(config_path)
|
| 22 |
+
|
| 23 |
+
model = SynthesizerTrn(
|
| 24 |
+
len(getattr(hps, 'symbols', [])),
|
| 25 |
+
hps.data.filter_length // 2 + 1,
|
| 26 |
+
n_speakers=hps.data.n_speakers,
|
| 27 |
+
**hps.model,
|
| 28 |
+
).to(device)
|
| 29 |
+
|
| 30 |
+
model.eval()
|
| 31 |
+
self.model = model
|
| 32 |
+
self.hps = hps
|
| 33 |
+
self.device = device
|
| 34 |
+
|
| 35 |
+
def load_ckpt(self, ckpt_path):
|
| 36 |
+
checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device))
|
| 37 |
+
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
|
| 38 |
+
print("Loaded checkpoint '{}'".format(ckpt_path))
|
| 39 |
+
print('missing/unexpected keys:', a, b)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class BaseSpeakerTTS(OpenVoiceBaseClass):
|
| 43 |
+
language_marks = {
|
| 44 |
+
"english": "EN",
|
| 45 |
+
"chinese": "ZH",
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
@staticmethod
|
| 49 |
+
def get_text(text, hps, is_symbol):
|
| 50 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
| 51 |
+
if hps.data.add_blank:
|
| 52 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 53 |
+
text_norm = torch.LongTensor(text_norm)
|
| 54 |
+
return text_norm
|
| 55 |
+
|
| 56 |
+
@staticmethod
|
| 57 |
+
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
| 58 |
+
audio_segments = []
|
| 59 |
+
for segment_data in segment_data_list:
|
| 60 |
+
audio_segments += segment_data.reshape(-1).tolist()
|
| 61 |
+
audio_segments += [0] * int((sr * 0.05)/speed)
|
| 62 |
+
audio_segments = np.array(audio_segments).astype(np.float32)
|
| 63 |
+
return audio_segments
|
| 64 |
+
|
| 65 |
+
@staticmethod
|
| 66 |
+
def split_sentences_into_pieces(text, language_str):
|
| 67 |
+
texts = utils.split_sentence(text, language_str=language_str)
|
| 68 |
+
print(" > Text splitted to sentences.")
|
| 69 |
+
print('\n'.join(texts))
|
| 70 |
+
print(" > ===========================")
|
| 71 |
+
return texts
|
| 72 |
+
|
| 73 |
+
def tts(self, text, output_path, speaker, language='English', speed=1.0):
|
| 74 |
+
mark = self.language_marks.get(language.lower(), None)
|
| 75 |
+
assert mark is not None, f"language {language} is not supported"
|
| 76 |
+
|
| 77 |
+
texts = self.split_sentences_into_pieces(text, mark)
|
| 78 |
+
|
| 79 |
+
audio_list = []
|
| 80 |
+
for t in texts:
|
| 81 |
+
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
|
| 82 |
+
t = f'[{mark}]{t}[{mark}]'
|
| 83 |
+
stn_tst = self.get_text(t, self.hps, False)
|
| 84 |
+
device = self.device
|
| 85 |
+
speaker_id = self.hps.speakers[speaker]
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
| 88 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
| 89 |
+
sid = torch.LongTensor([speaker_id]).to(device)
|
| 90 |
+
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6,
|
| 91 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
| 92 |
+
audio_list.append(audio)
|
| 93 |
+
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)
|
| 94 |
+
|
| 95 |
+
if output_path is None:
|
| 96 |
+
return audio
|
| 97 |
+
else:
|
| 98 |
+
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class ToneColorConverter(OpenVoiceBaseClass):
|
| 102 |
+
def __init__(self, *args, **kwargs):
|
| 103 |
+
super().__init__(*args, **kwargs)
|
| 104 |
+
|
| 105 |
+
if kwargs.get('enable_watermark', True):
|
| 106 |
+
import wavmark
|
| 107 |
+
self.watermark_model = wavmark.load_model().to(self.device)
|
| 108 |
+
else:
|
| 109 |
+
self.watermark_model = None
|
| 110 |
+
self.version = getattr(self.hps, '_version_', "v1")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def extract_se(self, ref_wav_list, se_save_path=None):
|
| 115 |
+
if isinstance(ref_wav_list, str):
|
| 116 |
+
ref_wav_list = [ref_wav_list]
|
| 117 |
+
|
| 118 |
+
device = self.device
|
| 119 |
+
hps = self.hps
|
| 120 |
+
gs = []
|
| 121 |
+
|
| 122 |
+
for fname in ref_wav_list:
|
| 123 |
+
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate)
|
| 124 |
+
y = torch.FloatTensor(audio_ref)
|
| 125 |
+
y = y.to(device)
|
| 126 |
+
y = y.unsqueeze(0)
|
| 127 |
+
y = spectrogram_torch(y, hps.data.filter_length,
|
| 128 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 129 |
+
center=False).to(device)
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
| 132 |
+
gs.append(g.detach())
|
| 133 |
+
gs = torch.stack(gs).mean(0)
|
| 134 |
+
|
| 135 |
+
if se_save_path is not None:
|
| 136 |
+
os.makedirs(os.path.dirname(se_save_path), exist_ok=True)
|
| 137 |
+
torch.save(gs.cpu(), se_save_path)
|
| 138 |
+
|
| 139 |
+
return gs
|
| 140 |
+
|
| 141 |
+
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="default"):
|
| 142 |
+
hps = self.hps
|
| 143 |
+
# load audio
|
| 144 |
+
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate)
|
| 145 |
+
audio = torch.tensor(audio).float()
|
| 146 |
+
|
| 147 |
+
with torch.no_grad():
|
| 148 |
+
y = torch.FloatTensor(audio).to(self.device)
|
| 149 |
+
y = y.unsqueeze(0)
|
| 150 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
| 151 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 152 |
+
center=False).to(self.device)
|
| 153 |
+
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device)
|
| 154 |
+
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][
|
| 155 |
+
0, 0].data.cpu().float().numpy()
|
| 156 |
+
audio = self.add_watermark(audio, message)
|
| 157 |
+
if output_path is None:
|
| 158 |
+
return audio
|
| 159 |
+
else:
|
| 160 |
+
soundfile.write(output_path, audio, hps.data.sampling_rate)
|
| 161 |
+
|
| 162 |
+
def add_watermark(self, audio, message):
|
| 163 |
+
if self.watermark_model is None:
|
| 164 |
+
return audio
|
| 165 |
+
device = self.device
|
| 166 |
+
bits = utils.string_to_bits(message).reshape(-1)
|
| 167 |
+
n_repeat = len(bits) // 32
|
| 168 |
+
|
| 169 |
+
K = 16000
|
| 170 |
+
coeff = 2
|
| 171 |
+
for n in range(n_repeat):
|
| 172 |
+
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
| 173 |
+
if len(trunck) != K:
|
| 174 |
+
print('Audio too short, fail to add watermark')
|
| 175 |
+
break
|
| 176 |
+
message_npy = bits[n * 32: (n + 1) * 32]
|
| 177 |
+
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
signal = torch.FloatTensor(trunck).to(device)[None]
|
| 180 |
+
message_tensor = torch.FloatTensor(message_npy).to(device)[None]
|
| 181 |
+
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
|
| 182 |
+
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
|
| 183 |
+
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
|
| 184 |
+
return audio
|
| 185 |
+
|
| 186 |
+
def detect_watermark(self, audio, n_repeat):
|
| 187 |
+
bits = []
|
| 188 |
+
K = 16000
|
| 189 |
+
coeff = 2
|
| 190 |
+
for n in range(n_repeat):
|
| 191 |
+
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
| 192 |
+
if len(trunck) != K:
|
| 193 |
+
print('Audio too short, fail to detect watermark')
|
| 194 |
+
return 'Fail'
|
| 195 |
+
with torch.no_grad():
|
| 196 |
+
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0)
|
| 197 |
+
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze()
|
| 198 |
+
bits.append(message_decoded_npy)
|
| 199 |
+
bits = np.stack(bits).reshape(-1, 8)
|
| 200 |
+
message = utils.bits_to_string(bits)
|
| 201 |
+
return message
|
| 202 |
+
|