Update app.py
Browse files
app.py
CHANGED
|
@@ -1,125 +1,60 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import uuid
|
| 3 |
-
# import time
|
| 4 |
-
# import torch
|
| 5 |
-
# import gradio as gr
|
| 6 |
-
# os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
| 7 |
-
# import mecab_patch
|
| 8 |
-
# import english_patch
|
| 9 |
-
# from melo.api import TTS
|
| 10 |
-
# from openvoice.api import ToneColorConverter
|
| 11 |
-
|
| 12 |
-
# # Set temporary cache locations for Hugging Face Spaces
|
| 13 |
-
# os.environ["TORCH_HOME"] = "/tmp/torch"
|
| 14 |
-
# os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 15 |
-
# os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
| 16 |
-
# os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 17 |
-
# os.environ["MPLCONFIGDIR"] = "/tmp"
|
| 18 |
-
# os.environ["XDG_CACHE_HOME"] = "/tmp"
|
| 19 |
-
# os.environ["XDG_CONFIG_HOME"] = "/tmp"
|
| 20 |
-
# os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
| 21 |
-
# os.makedirs("/tmp/torch", exist_ok=True)
|
| 22 |
-
# os.makedirs("/tmp/huggingface", exist_ok=True)
|
| 23 |
-
# os.makedirs("/tmp/flagged", exist_ok=True)
|
| 24 |
-
|
| 25 |
-
# # Output folder
|
| 26 |
-
# output_dir = "/tmp/outputs"
|
| 27 |
-
# os.makedirs(output_dir, exist_ok=True)
|
| 28 |
-
|
| 29 |
-
# # Initialize tone converter
|
| 30 |
-
# ckpt_converter = "checkpoints/converter/config.json"
|
| 31 |
-
# tone_color_converter = ToneColorConverter(ckpt_converter)
|
| 32 |
-
|
| 33 |
-
# # Device setting
|
| 34 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
-
|
| 36 |
-
# def clone_and_speak(text, speaker_wav):
|
| 37 |
-
# if not speaker_wav:
|
| 38 |
-
# return "Please upload a reference .wav file."
|
| 39 |
-
|
| 40 |
-
# # import melo.text.english as english
|
| 41 |
-
# # original_g2p = english.g2p
|
| 42 |
-
|
| 43 |
-
# # def patched_g2p(text):
|
| 44 |
-
# # phones, tones, word2ph = original_g2p(text)
|
| 45 |
-
# # # Fix: wrap ints in list to avoid TypeError
|
| 46 |
-
# # word2ph_fixed = []
|
| 47 |
-
# # for item in word2ph:
|
| 48 |
-
# # if isinstance(item, int):
|
| 49 |
-
# # word2ph_fixed.append([item])
|
| 50 |
-
# # else:
|
| 51 |
-
# # word2ph_fixed.append(item)
|
| 52 |
-
# # return phones, tones, word2ph_fixed
|
| 53 |
-
|
| 54 |
-
# # english.g2p = patched_g2p
|
| 55 |
-
|
| 56 |
-
# base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 57 |
-
# tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
| 58 |
-
# final_output_path = f"{output_dir}/{base_name}_converted.wav"
|
| 59 |
-
|
| 60 |
-
# # Use English speaker model
|
| 61 |
-
# model = TTS(language="EN", device=device)
|
| 62 |
-
# speaker_ids = model.hps.data.spk2id
|
| 63 |
-
# default_speaker_id = next(iter(speaker_ids.values()))
|
| 64 |
-
|
| 65 |
-
# # Generate base TTS voice
|
| 66 |
-
# speed = 1.0
|
| 67 |
-
# model.tts_to_file(text, default_speaker_id, tmp_melo_path,speed=speed)
|
| 68 |
-
|
| 69 |
-
# # Use speaker_wav as reference to extract style embedding
|
| 70 |
-
# from openvoice import se_extractor
|
| 71 |
-
# ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False)
|
| 72 |
-
|
| 73 |
-
# # Run the tone conversion
|
| 74 |
-
# tone_color_converter.convert(
|
| 75 |
-
# audio_src_path=tmp_melo_path,
|
| 76 |
-
# src_se=ref_se,
|
| 77 |
-
# tgt_se=ref_se,
|
| 78 |
-
# output_path=final_output_path,
|
| 79 |
-
# message="@HuggingFace",
|
| 80 |
-
# )
|
| 81 |
-
|
| 82 |
-
# return final_output_path
|
| 83 |
-
|
| 84 |
-
# # Gradio interface
|
| 85 |
-
# gr.Interface(
|
| 86 |
-
# fn=clone_and_speak,
|
| 87 |
-
# inputs=[
|
| 88 |
-
# gr.Textbox(label="Enter Text"),
|
| 89 |
-
# gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)")
|
| 90 |
-
# ],
|
| 91 |
-
# outputs=gr.Audio(label="Synthesized Output"),
|
| 92 |
-
# flagging_dir="/tmp/flagged",
|
| 93 |
-
# title="Text to Voice using Melo TTS + OpenVoice",
|
| 94 |
-
# description="Use Melo TTS for base synthesis and OpenVoice to apply a reference speaker's tone.",
|
| 95 |
-
# ).launch()
|
| 96 |
-
|
| 97 |
-
|
| 98 |
import os
|
| 99 |
-
import time
|
| 100 |
import uuid
|
|
|
|
|
|
|
| 101 |
import gradio as gr
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
from TTS.api import TTS
|
| 104 |
-
from openvoice import se_extractor
|
| 105 |
from openvoice.api import ToneColorConverter
|
| 106 |
-
|
| 107 |
-
# Import your local english.py logic
|
| 108 |
from meloTTS import english
|
| 109 |
|
| 110 |
-
#
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
os.makedirs(output_dir, exist_ok=True)
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
tone_color_converter
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
def clone_and_speak(text, speaker_wav):
|
| 120 |
if not speaker_wav:
|
| 121 |
return "Please upload a reference .wav file."
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 124 |
tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
| 125 |
final_output_path = f"{output_dir}/{base_name}_converted.wav"
|
|
@@ -130,32 +65,99 @@ def clone_and_speak(text, speaker_wav):
|
|
| 130 |
default_speaker_id = next(iter(speaker_ids.values()))
|
| 131 |
|
| 132 |
# Generate base TTS voice
|
| 133 |
-
|
|
|
|
| 134 |
|
| 135 |
-
#
|
|
|
|
| 136 |
ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False)
|
| 137 |
|
| 138 |
-
#
|
| 139 |
tone_color_converter.convert(
|
| 140 |
audio_src_path=tmp_melo_path,
|
| 141 |
src_se=ref_se,
|
| 142 |
tgt_se=ref_se,
|
| 143 |
output_path=final_output_path,
|
| 144 |
-
message="@HuggingFace"
|
| 145 |
)
|
| 146 |
|
| 147 |
return final_output_path
|
| 148 |
|
| 149 |
-
# Gradio
|
| 150 |
-
|
| 151 |
fn=clone_and_speak,
|
| 152 |
inputs=[
|
| 153 |
-
gr.Textbox(label="Text
|
| 154 |
-
gr.Audio(label="Reference Voice (
|
| 155 |
],
|
| 156 |
-
outputs=gr.Audio(label="
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
if __name__ == "__main__":
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import uuid
|
| 3 |
+
import time
|
| 4 |
+
import torch
|
| 5 |
import gradio as gr
|
| 6 |
+
os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
| 7 |
+
import mecab_patch
|
| 8 |
+
import english_patch
|
| 9 |
+
#from melo.api import TTS
|
| 10 |
from TTS.api import TTS
|
|
|
|
| 11 |
from openvoice.api import ToneColorConverter
|
|
|
|
|
|
|
| 12 |
from meloTTS import english
|
| 13 |
|
| 14 |
+
# Set temporary cache locations for Hugging Face Spaces
|
| 15 |
+
os.environ["TORCH_HOME"] = "/tmp/torch"
|
| 16 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 17 |
+
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
| 18 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 19 |
+
os.environ["MPLCONFIGDIR"] = "/tmp"
|
| 20 |
+
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
| 21 |
+
os.environ["XDG_CONFIG_HOME"] = "/tmp"
|
| 22 |
+
os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
| 23 |
+
os.makedirs("/tmp/torch", exist_ok=True)
|
| 24 |
+
os.makedirs("/tmp/huggingface", exist_ok=True)
|
| 25 |
+
os.makedirs("/tmp/flagged", exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# Output folder
|
| 28 |
+
output_dir = "/tmp/outputs"
|
| 29 |
os.makedirs(output_dir, exist_ok=True)
|
| 30 |
|
| 31 |
+
# Initialize tone converter
|
| 32 |
+
ckpt_converter = "checkpoints/converter/config.json"
|
| 33 |
+
tone_color_converter = ToneColorConverter(ckpt_converter)
|
| 34 |
+
|
| 35 |
+
# Device setting
|
| 36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
|
| 38 |
def clone_and_speak(text, speaker_wav):
|
| 39 |
if not speaker_wav:
|
| 40 |
return "Please upload a reference .wav file."
|
| 41 |
|
| 42 |
+
# import melo.text.english as english
|
| 43 |
+
# original_g2p = english.g2p
|
| 44 |
+
|
| 45 |
+
# def patched_g2p(text):
|
| 46 |
+
# phones, tones, word2ph = original_g2p(text)
|
| 47 |
+
# # Fix: wrap ints in list to avoid TypeError
|
| 48 |
+
# word2ph_fixed = []
|
| 49 |
+
# for item in word2ph:
|
| 50 |
+
# if isinstance(item, int):
|
| 51 |
+
# word2ph_fixed.append([item])
|
| 52 |
+
# else:
|
| 53 |
+
# word2ph_fixed.append(item)
|
| 54 |
+
# return phones, tones, word2ph_fixed
|
| 55 |
+
|
| 56 |
+
# english.g2p = patched_g2p
|
| 57 |
+
|
| 58 |
base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 59 |
tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
| 60 |
final_output_path = f"{output_dir}/{base_name}_converted.wav"
|
|
|
|
| 65 |
default_speaker_id = next(iter(speaker_ids.values()))
|
| 66 |
|
| 67 |
# Generate base TTS voice
|
| 68 |
+
speed = 1.0
|
| 69 |
+
model.tts_to_file(text, default_speaker_id, tmp_melo_path,speed=speed)
|
| 70 |
|
| 71 |
+
# Use speaker_wav as reference to extract style embedding
|
| 72 |
+
from openvoice import se_extractor
|
| 73 |
ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False)
|
| 74 |
|
| 75 |
+
# Run the tone conversion
|
| 76 |
tone_color_converter.convert(
|
| 77 |
audio_src_path=tmp_melo_path,
|
| 78 |
src_se=ref_se,
|
| 79 |
tgt_se=ref_se,
|
| 80 |
output_path=final_output_path,
|
| 81 |
+
message="@HuggingFace",
|
| 82 |
)
|
| 83 |
|
| 84 |
return final_output_path
|
| 85 |
|
| 86 |
+
# Gradio interface
|
| 87 |
+
gr.Interface(
|
| 88 |
fn=clone_and_speak,
|
| 89 |
inputs=[
|
| 90 |
+
gr.Textbox(label="Enter Text"),
|
| 91 |
+
gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)")
|
| 92 |
],
|
| 93 |
+
outputs=gr.Audio(label="Synthesized Output"),
|
| 94 |
+
flagging_dir="/tmp/flagged",
|
| 95 |
+
title="Text to Voice using Melo TTS + OpenVoice",
|
| 96 |
+
description="Use Melo TTS for base synthesis and OpenVoice to apply a reference speaker's tone.",
|
| 97 |
+
).launch()
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# import os
|
| 101 |
+
# import time
|
| 102 |
+
# import uuid
|
| 103 |
+
# import gradio as gr
|
| 104 |
+
|
| 105 |
+
# from TTS.api import TTS
|
| 106 |
+
# from openvoice import se_extractor
|
| 107 |
+
# from openvoice.api import ToneColorConverter
|
| 108 |
+
|
| 109 |
+
# # Import your local english.py logic
|
| 110 |
+
# from meloTTS import english
|
| 111 |
+
|
| 112 |
+
# # Paths
|
| 113 |
+
# device = "cuda" if os.system("nvidia-smi") == 0 else "cpu"
|
| 114 |
+
# output_dir = "outputs"
|
| 115 |
+
# os.makedirs(output_dir, exist_ok=True)
|
| 116 |
+
|
| 117 |
+
# # Load OpenVoice tone converter
|
| 118 |
+
# tone_color_converter = ToneColorConverter(f"{os.getcwd()}/checkpoints", device=device)
|
| 119 |
+
# tone_color_converter.load_model()
|
| 120 |
+
|
| 121 |
+
# def clone_and_speak(text, speaker_wav):
|
| 122 |
+
# if not speaker_wav:
|
| 123 |
+
# return "Please upload a reference .wav file."
|
| 124 |
+
|
| 125 |
+
# base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
| 126 |
+
# tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
| 127 |
+
# final_output_path = f"{output_dir}/{base_name}_converted.wav"
|
| 128 |
+
|
| 129 |
+
# # Use English speaker model
|
| 130 |
+
# model = TTS(language="EN", device=device)
|
| 131 |
+
# speaker_ids = model.hps.data.spk2id
|
| 132 |
+
# default_speaker_id = next(iter(speaker_ids.values()))
|
| 133 |
+
|
| 134 |
+
# # Generate base TTS voice
|
| 135 |
+
# model.tts_to_file(text, speaker_id=default_speaker_id, file_path=tmp_melo_path, speed=1.0)
|
| 136 |
+
|
| 137 |
+
# # Extract style embedding
|
| 138 |
+
# ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False)
|
| 139 |
+
|
| 140 |
+
# # Convert tone
|
| 141 |
+
# tone_color_converter.convert(
|
| 142 |
+
# audio_src_path=tmp_melo_path,
|
| 143 |
+
# src_se=ref_se,
|
| 144 |
+
# tgt_se=ref_se,
|
| 145 |
+
# output_path=final_output_path,
|
| 146 |
+
# message="@HuggingFace"
|
| 147 |
+
# )
|
| 148 |
+
|
| 149 |
+
# return final_output_path
|
| 150 |
+
|
| 151 |
+
# # Gradio Interface
|
| 152 |
+
# demo = gr.Interface(
|
| 153 |
+
# fn=clone_and_speak,
|
| 154 |
+
# inputs=[
|
| 155 |
+
# gr.Textbox(label="Text to Synthesize"),
|
| 156 |
+
# gr.Audio(label="Reference Voice (WAV)", type="filepath")
|
| 157 |
+
# ],
|
| 158 |
+
# outputs=gr.Audio(label="Cloned Voice Output"),
|
| 159 |
+
# title="Voice Cloner with MeloTTS + OpenVoice"
|
| 160 |
+
# )
|
| 161 |
|
| 162 |
+
# if __name__ == "__main__":
|
| 163 |
+
# demo.launch()
|